Journal of Korean Society of Steel Construction

Vol.36, No.4, pp.243-251, August, 2024

Check for updates
 ISSN(print) 1226-363X ISSN(online) 2287-4054
 DOI https://doi.org/10.7781/kjoss.2024.36.4.243

다수의 T-단면 보강재로 보강된 압축판의 좌굴계수 평가

박용명^{1*}

'교수, 부산대학교, 사회기반시스템공학과

Evaluation of Buckling Coefficients for Compression Plates Reinforced with Multiple T-section Stiffeners

Park, Yong Myung^{1*}

¹Professor, Dept. of Civil Engineering, Pusan National University, Busan, 46241, Korea

Abstract - A study was conducted to propose a buckling coefficient equation for a wide compression plate reinforced with multiple T-section stiffeners. The commentary C6.11.11.2 of AASHTO LRFD bridge design specifications presents a buckling coefficient equation for the plates with up to 5 stiffeners. This equation is based on the approximate buckling coefficient equation (k_f) of Timoshenko and Gere, but it has the limitation of being unable to determine the size of stiffeners considering the aspect ratio and the magnitude of buckling coefficient. A series of eigenvalue analysis was performed for plates with up to 9 stiffeners, including the aspect ratio, width-to-thickness ratio and the size of stiffeners as variables. By comparing the buckling coefficient from FE analysis with the k_f equation, correction factor(c_c) was derived for $n \le 3$ and n > 3 (n: number of stiffeners) respectively and a buckling coefficient equation incorporating c_c was proposed. In addition, a method for calculating the second moment of inertia of the stiffener was proposed when determining the buckling coefficient.

Keywords - Compression plate, Multiple stiffeners, Buckling coefficient equation, Aspect ratio, Moment of inertia of stiffener

1.서론

강박스 거덕의 압축플랜지와 같은 압축판은 소정의 좌굴강도 확보를 위해 종방향보강재로 보강하게 된다 (Fig. 1)^{[1]-[3]}. 현재 AASHTO LRFD 교량설계기준(이하 AASHTO 기준)^[4]과 국내 KDS 기준^[5]에서는 좌굴계수 로부터 정의한 판의 '조밀' 및 '비조밀' 한계세장비에 따라 보강판의 압축강도를 산정토록 하고 있어 좌굴계 수의 정확한 평가가 중요하다.

AASHTO 기준의 본문 6.11.11.2에서는 보강재 개수 (n)≤2일 때 보강재의 단면2차모멘트(I_s)에 따른 좌굴계 수 산정식을 제시하고 있다. 보강재는 횡비틀림좌굴

*Corresponding author.

Tel. +82-51-510-2350 Fax. +82-51-513-9596 E-mail. ympk@pusan.ac.kr (lateral torsional buckling)에 유리한 T-단면을 전제로 하 며, *I* , 값은 보강재의 하단에 대해 산정하도록 규정하고 있다. *n* ≤ 2로 제한한 이유는 본문 규정의 식은 종방향보 강재가 매우 길다는 가정으로 인해 *n*이 증가할수록 보강 재 제원이 과도하게 커지는 문제가 있기 때문이다^[6].

한편, AASHTO 기준의 해설부 C6.11.11.2에서는 *n* ≤ 5까지의 판에 적용할 수 있는 좌굴계수식을 별도로 제시하고 있다. 이 식은 Timoshenko and Gere^[7]가 에너 지법으로 유도한 좌굴강도(*F_{cr}*) 식을 토대로 한 것이다. 단, 해설부의 좌굴계수식은 판의 형상비와 좌굴계수 크 기에 따른 보강재의 제원을 유연하게 결정할 수 없는 제 약이 있다. 또한 Timoshenko and Gere의 식은 좌굴 형 상을 종방향 및 횡방향(Fig. 1의 *x*축 및 *y*축 방향)으로 각각 half-sine wave로 가정한 근사식에 해당된다. 이에 Wang *et al.*^[8]은 Timoshenko and Gere 식의 적정성을 평 가하기 위해 *n* ≤ 3에 대해 판의 형상비, 세장비(폭-두께 비) 그리고 보강재의 제원 변화에 따른 좌굴계수 평가 해석을 수행하고 Timoshenko and Gere의 식에 보정계 수(*c*_{*i*})를 적용한 좌굴계수식을 제안한 바 있다.

Note.-Discussion open until February 28, 2025. This manuscript for this paper was submitted for review and possible publication on June 12, 2024; revised on August 05, 2024; approved on August 08, 2024. Copyright © 2024 by Korean Society of Steel Construction

거더 폭이 큰 해상 교량과 같은 경우에는 다수의 종 방향 보강재가 필요할 수 있다. 본 연구의 목적은 다수 의 보강재가 적용되고 서브패널 형상비(*a* =*a*/*w*, Fig. 1 참조)가 큰 범위까지 Timoshenko and Gere의 좌굴계수 식의 적용성을 평가하는 것이다. 이를 위해 *n* ≤ 9, 즉 서브패널 10개까지에 대해 판의 형상비, 세장비 및 보 강재의 제원 변수를 고려한 좌굴고유치해석을 수행하 고 보강재의 단면2차모멘트 산정 방안과 좌굴계수 산 정식을 제안하였다.

Fig. 1. Longitudinally stiffened plate (n = 5)

2. 압축판의 좌굴계수식

2.1 AASHTO 기준

본문 6.11.11.2에서는 *n* = 1,2에 대해 좌굴계수식을 다음 식 (1)로 제시하고 있다. 식 (1)은 종방향보강재가 매우 길다는 가정에 의한 것이어서 형상비 관련 변수가 포함되지 않는다.

$$k = \left(\frac{8I_s}{wt_f^3}\right)^{1/3} : n = 1$$
 (1a)

$$k = \left(\frac{0.894I_s}{wt_f^3}\right)^{1/3} : n = 2$$
(1b)

여기서, 주목할 사항은 보강재는 T-단면으로 적용하되 단면2차모멘트(*I_s*)는 압축판의 면(즉, T-단면 보강재의 하단)에 대해 산정하도록 규정하고 있다. 한편, 해설부에서는 *n* ≤ 5, *β* ≤ 3인 조건에서 다음 식 (2)의 적용을 허용하고 있다.

$$k = \frac{(1+\beta^2)^2 + 87.3}{(n+1)^2 \beta^2 [1+0.1(n+1)]} \le 4.0$$
⁽²⁾

여기서 β(= a/b)는 압축판의 세장비이다. 단, 본 기준 에서는 식 (2)의 적용 시 T-단면 보강재의 I_s = 8wt³_f (t_f: 판의 두께, w: 서브패널 폭)가 되도록 규정하고 있어 판 의 형상비와 목표 좌굴계수 크기에 따른 보강재의 제원 을 유연하게 결정할 수 없다.

식 (2)는 Timoshenko and Gere^[7]가 에너지법으로 유 도한 좌굴강도(*F_{cr}*) 식으로부터 최종 유도되는 다음 식 (3)을 토대로 한 것이다. 식 (3)은 형상비를 고려하고 목 표 좌굴계수 값에 해당하는 보강재 제원의 선정이 가능 하다.

$$k_{f} = \frac{(1+\beta^{2})^{2} + (n+1)\gamma}{(n+1)^{2}\beta^{2}[1+(n+1)\delta]}$$
(3)

여기서,

$$\gamma = \frac{EI_s}{bD} \tag{4a}$$

$$\delta = \frac{A_l}{b t_f} \tag{4b}$$

그리고, *D* = *Et*³/12(1-ν²) : 판의 휨강성, ν(=0.3) : 포아송 비, *A*_i : 보강재 1개의 단면적이며, γ와 δ는 각각 보강재 1개의 '휨강성비'와 '단면적비'이다.

2.2 Wang et al.의 좌굴계수식

Wang et al.^[8]은 압축판의 형상비와 목표 좌굴계수 값에 따라 보강재 제원을 결정할 수 있도록 하기 위해 식 (3)의 적용성을 평가하였다. 이를 위해 판의 형상비, 서브패널의 폭-두께비(λ_f = w/t_f), 그리고 보강재의 제 원을 주요 변수로 하여 보강재 3개까지에 대해 좌굴고 유치해석을 수행하였다. 수치해석 결과를 바탕으로 식 (3)에 수정계수(*c_f*)를 도입하여 좌굴계수 산정식을 다 음 식 (5a) 및 식 (5b)로 제안하였다.

•
$$\beta/\beta_{cr} \le 1.0$$
일 때

$$k_{fc} = \frac{(1+\beta^2)^2 + (n+1)\gamma}{(n+1)^2\beta^2[1+(n+1)\delta]} \cdot c_f \le 4.0$$
(5a)

•
$$\beta/\beta_{cr} > 1.0$$
 일 때

$$k_{fc} = k_{f,\min} = \frac{2[1 + \sqrt{1 + (n+1)\gamma}]}{(n+1)^2[1 + (n+1)\delta]}$$
(5b)

여기서, β_α은 식 (3)의 k_f가 최소값을 보이는 한계 형상 비로서 다음과 같다.

$$\beta_{cr} = \sqrt[4]{1 + (n+1)\gamma} \tag{6}$$

$$c_f = \left(\frac{\beta}{\beta_{cr}}\right)^{\frac{1}{n+1}} \tag{7}$$

Wang *et al.* 역시 식 (4a)의 γ 산정 시 *I*,를 AASHTO 기준과 같이 보강재의 하단에 대한 단면2차모멘트로 고려하였다.

3. 전산 모델 및 예비 분석

3.1 전산 모델

보강판의 좌굴고유치해석은 ABAQUS 프로그램^[9] 으로 수행하였다. 판과 T-단면 보강재는 모두 S4R 쉘요 소로 모델링하였으며, 요소의 크기는 20 mm × 20 mm 내외로 충분히 세분화하였다. 경계조건은 Fig. 2에 n=5의 예를 보였으며, 여기서 *U*는 이동변위, *R*은 회 전변위이다. Line A에는 *x*축 방향 이동변위(U_x)를 동 일하게 부여하기 위해 'coupling: kinematic' 옵션을 적 용하였다.

본 모델은 4변 모두 단순지지 조건에 해당하여 인접 패널에 의한 구속 효과(즉, continuity effect)를 고려하 지 않으므로 안전측의 좌굴계수를 제공할 것이다. 한편 하중은 Fig. 2에 보인 바와 같이 압축플랜지와 보강재

* Compression loads were also applied to the stiffeners (not shown)

Location	U_x	U_y	U_z	R_{x}	R_{y}	R_{z}
Point a	fix	fix	-	-	-	-
Point b	fix	-	-	-	-	-
Line A, B	-	-	fix	-	-	-
Line C	-	-	-	fix	-	-

Fig. 2. Loadings and boundary conditions (n = 5)

1/100 rad	1/58 rad	1/50 rad	1/58 rad	1/100 rad	
-	-	-	-	+	

Fig. 3. Initial imperfection of stiffeners at centerline

에 단위 압축응력(1 MPa)에 해당하는 선하중을 재하하였다.

한편, 보강재의 초기처짐을 고려하였으며 Fig. 3에 보인 바와 같이 종방향의 중앙선을 기준으로 횡방향으 로는 중앙점에서 최대 1/50 rad 회전된 것으로 고려하 였다.

3.2 단면2차모멘트 산정 방안 및 좌굴계수식 도출을 위한 예비 분석

좌굴계수식의 도출을 위한 본 해석에 앞서 예비 분석 을 수행하였다. *n*=5, *t_f*=32 mm, *w*=600 mm로 하였 으며 간격(*a*)과 보강재 제원은 Table 1에 제시하였다. Table 1에서 *k_{FEA}*는 좌굴고유치해석에 의한 좌굴계수 이며 *a*=1,500 mm와 *a*=9,000 mm의 좌굴형상을 Fig. 4에 예시하였다(Fig. 4는 좌굴형상을 명확히 보이기 위 해 요소 크기를 (a) 45 mm × 45 mm와 (b) 60 mm × 60 mm로 크게 한 것임).

Table 1에서 Is는 AASHTO 기준에 따라 T-보강재 하

		Tatifforon		I _s (A	ASHTO)		I_{sc} (centroidal axis)			
a (mm)	β	$(H \times B \times t_w \times t_s)$	k _{FEA}	$\frac{I_s}{(\times 10^6 \text{ mm}^4)}$	β/β_{cr}	k _f Eq. (3)	$\frac{I_{sc}}{(\times 10^6 \text{ mm}^4)}$	β/β_{cr}	<i>k_f</i> Eq. (3)	
1,500	0.625	125×190×10×10	2.21	32.4	0.20	2.68	32.4	0.20	2.68	
1,500	0.625	135×200×12×12	2.85	47.4	0.18	3.69	47.4	0.18	3.69	
2,400	1.0	150×230×13×13	1.89	72.7	0.26	2.13	72.7	0.26	2.13	
4,000	1.67	185×280×15×15	1.36	156.9	0.36	1.53	146.0	0.37	1.43	
6,000	2.5	215×320×18×18	1.01	290.3	0.47	1.18	243.7	0.49	1.01	
9,000	3.75	265×400×22×22	0.85	672.9	0.57	1.09	481.7	0.62	0.82	

Table 1. Preliminary analysis cases (n = 5, $t_f = 32$ mm, w = 600 mm)

(b) *a* =9,000 mm (3D view)

Fig. 4. Buckling shapes : n =5, t_f =32 mm,
(a) a =1,500 mm, T-135×200×12×12,
(b) a =9,000 mm, T-265×400×22×22

Fig. 5. Considered section for I_{sc} (second moment of inertia of stiffener and sub-panel about centroid)

단에 대해 산정한 단면2차모멘트이다. 반면 *I_{sc}*는 압축 판(총폭 *b*)과 보강재들이 이루는 총단면의 도심축에 대 해 서브패널과 보강재가 이루는 단면(Fig. 5 참조)의 단 면2차모멘트이다. 단, 도심축이 압축판의 면내에 있는 경우에는 *I_s*와 같다고 고려하였다. 이로부터 각 경우별 β_{cr}과 k_f를 식 (6)과 식 (3)으로부터 산정하였다.

Fig. 6. β/β_{cr} vs. $k_{FEA}/k_f (k_f \text{ based on } I_s \text{ and } I_{sc})$

단면2차모멘트 산정 방식별 k_{FEA}/k_f 비를 Fig. 6에 도시하였다. 이로부터 AASHTO 방식으로 산정한 I_s 적 용 시 형상비 변수 $β/β_{cr}$ 이 증가함에 따라 k_{FEA}/k_f 비가 다시 감소하는 결과를 보인다. 보강재 개수가 적은 경 우 및 보강재 제원이 크지 않은 경우(일반적으로 형상 비가 작을 때)에는 압축판과 보강재들이 이루는 총단면 의 도심이 압축판 내 또는 보강재 하단 근처에 있게 된 다. 이에 따라 Timoshenko and Gere는 압축판의 기여 는 작으므로 무시하고 보강재의 단면2차모멘트를 보강 재 하단에 대해 산정토록 규정하였으며^[7], AASHTO 기 준도 이를 따르고 있다. 그러나, 보강재 수가 많은 경우 와 보강재의 제원이 커지면 도심은 보강재의 스템 내에 존재하게 된다. 이 경우 $I_s > I_s$ 가 되며, 따라서 Fig. 6으 로부터 단면2차모멘트를 I_s 로 고려하는 것이 적절함을 알 수 있다.

한편, β/β_{cr}이 작을수록 k_{FEA}/k_f 비가 감소하는 이유 는 식 (3)의 k_f가 좌굴모드를 종방향과 횡방향으로 half-sine wave로 가정하여 유도된 반면, Fig. 4(a)에서 와 같이 횡방향으로 보강재 위치에서 국부변형의 발생 으로 인한 차이가 발생하며 β/β_{cr} 이 작을수록 그 영향 이 커지기 때문이다. 이를 고려하고자 Wang *et al.*^[8]은 $n \leq 3$ 에 대해 수정계수 (c_f) 를 식 (7)로 제안하였다. 만 약 n = 5인 경우에 적용하면 $c_f = (\beta/\beta_{cr})^{1/6}$ 이 되며 이를 Fig. 6에 도시하였다. 이로부터 I_x 를 적용하더라도 보 강재 개수가 많은 경우(n > 3)에는 보정계수를 새로이 도출하여야 함을 보여준다.

4. 고유치해석 및 좌굴계수식 제안

4.1 고유치해석 및 결과

보강재 개수(*n*)는 3, 5, 7 및 9, 서브패널의 폭-두께비 (λ_f)는 18.8과 33.3, 그리고 서브패널의 폭(*w*)은 600 mm, 형상비(*a*)는 15까지 고려하였다. *a* = 15일 때 간격 (*a*)은 9,000 mm가 되는데, 이는 Hall and Yoo^[10]가 강박 스거더쿄에서 뒤틀림응력(distortional stress)을 제한하 기 위해 제안한 최대 간격 30 feet(=9.14 m)에 해당된다. 보강재의 제원은 형상비에 따라 식 (3)의 *k_f*가 4.0에 서 1.0의 값을 갖도록 선정하였다. 좌굴해석 경우와 결 과를 Table 2에서 Table 5까지 제시하였다. 이들 Table 에서 보강재의 단면2차모멘트(*I*_{s,min})은 다음과 같다.

- 총단면 도심이 압축판 내에 있는 경우 : 압축판의 기여는 무시하고 보강재의 압축판 면에 대한 단면2 차모멘트(= I_s)
- 총단면의 도심이 보강재 스템 내에 있는 경우(Fig. 5)
 : 도심축에 대한 보강재와 서브패널판의 단면2차 모멘트(= I_{sc}). 단, 도심이 보강재 스템 내에 있으나 압축판의 표면에 가까울 때 I_{sc}가 I_s보다 조금 크게 되는 경우가 있는데, 이 때는 I_s를 적용한다.

즉, 보강재의 단면2차모멘트는 I_s 와 I_{xc} 중 작은 값을 적용하기로 한다. 이로부터 k_{FEA} 와 식 (3)에 따라 산정 한 k_f 의 비를 Fig. 7에 도시하였다. Fig. 7로부터 β/β_{cr} 이 작을수록, 또한 판의 세장비(λ_f)가 작을수록 k_{FEA}/k_f 비가 더 작은 결과를 보인다.

Table 2. Analysis cases and results for n = 3 (w = 600 mm, b = 2,400 mm)

+			Tstiffener	I		h	This	study	k
l_f (mm)	a (mm)	ratio	$H \times B \times t_w \times t_s$	$(\times 10^6 \text{ mm}^2)$	k _{FEA}	Eq. (3)	β/β_{cr}	his study k_c Eq. (8) 0 2.02 27 2.69 9 1.74 4 2.64 5 1.36 -7 2.09 3 1.17 44 1.53 92 1.24 27 3.08 35 2.71 48 2.18 53 1.78 37 1.50	$\frac{k_{FEA}}{k_c}$
	1,500	lpha = 2.5 eta = 0.63	125×190×10×10 135×200×12×12	32.429 47.381	2.32 2.93	2.75 3.76	0.30 0.27	2.02 2.69	1.15 1.09
	2,400	lpha=4.0 eta=1.0	150×230×13×13 175×265×15×15	72.713 126.507	1.99 2.88	2.22 3.49	0.39 0.34	1.74 2.64	1.14 1.09
18	4,000	$\begin{array}{c} \alpha = 6.67 \\ \beta = 1.67 \end{array}$	185×280×15×15 225×340×19×19	146.998 289.525	1.52 2.40	1.60 2.56	0.55 0.47	1.36 2.09	1.12 1.15
	6,000	$\begin{array}{c} \alpha = 10.0 \\ \beta = 2.5 \end{array}$	215×320×18×18 255×380×21×21	245.610 424.680	1.27 1.72	1.27 1.73	0.73 0.64	1.17 1.53	1.09 1.12
	9,000	$\begin{array}{c} \alpha = 15.0 \\ \beta = 3.75 \end{array}$	265×400×22×22	486.171	1.29	1.27	0.92	1.24	1.04
	1,500	$\begin{array}{c} \alpha = 2.5\\ \beta = 0.63 \end{array}$	90×135×8×8	9.457	3.81	4.34	0.27	3.08	1.24
	2,400	lpha = 4.0 eta = 1.0	110×165×10×10	21.420	3.27	3.56	0.35	2.71	1.21
18	4,000	$\begin{array}{c} \alpha = 6.67 \\ \beta = 1.67 \end{array}$	140×210×12×12	47.358	2.62	2.65	0.48	2.18	1.20
	6,000	lpha = 10.0 eta = 2.5	165×245×14×14	81.347	2.08	2.03	0.63	1.78	1.17
t _f (mm) 32	9,000	$\begin{array}{c} \alpha = 15.0 \\ \beta = 3.75 \end{array}$	180×270×15×15	107.966	1.62	1.56	0.87	1.50	1.08

4			Tatiffonar	I		h	This	study	<i>k</i>
l_f (mm)	a (mm)	ratio	$H \times B \times t_w \times t_s$	$(\times 10^6 \text{ mm}^2)$	k _{FEA}	Eq. (3)	β/β_{cr}	k _c Eq. (8)	$\frac{k_{FEA}}{k_c}$
	1,500	lpha=2.5 eta=0.42	125×190×10×10 135×200×12×12	32.429 47.381	2.21 2.85	2.68 3.69	0.20 0.18	1.96 2.64	1.13 1.08
<i>t_f</i> (mm) 32	2,400	lpha = 4.0 eta = 0.67	150×230×13×13 175×265×15×15	72.713 125.678	1.89 2.77	2.13 3.37	0.26 0.23	1.67 2.56	1.13 1.08
	4,000	$\begin{array}{c} \alpha = 6.67 \\ \beta = 1.11 \end{array}$	185×280×15×15 225×340×19×19	146.004 287.126	1.36 2.24	1.43 2.40	0.37 0.31	1.22 1.97	1.11 1.14
	6,000	$\begin{array}{c} \alpha = 10.0 \\ \beta = 1.67 \end{array}$	215×320×18×18 255×380×21×21	243.666 420.906	1.01 1.48	1.01 1.48	0.49 0.43	0.92 1.31	1.10 1.13
	9,000	$\begin{array}{c} \alpha = 15.0 \\ \beta = 2.5 \end{array}$	265×400×22×22	481.740	0.85	0.82	0.62	0.80	1.06
	1,500	lpha = 2.5 eta = 0.42	90×135×8×8	9.457	3.74	4.26	0.18	3.03	1.23
	2,400	lpha =4.0 eta =0.67	110×165×10×10	21.304	3.15	3.44	0.23	2.62	1.20
18	4,000	$\begin{array}{c} \alpha = 6.67 \\ \beta = 1.11 \end{array}$	140×210×12×12	47.028	2.44	2.48	0.32	2.04	1.20
	6,000	lpha = 10.0 eta = 1.67	165×245×14×14	80.692	1.80	1.76	0.42	1.55	1.16
18	9,000	$ \begin{array}{c} \alpha = 15.0 \\ \beta = 2.5 \end{array} $	180×270×15×15	107.043	1.13	1.07	0.58	1.03	1.10

Table 3. Analysis cases and results for n = 5 (w = 600 mm, b = 3,600 mm)

Table 4. Analysis cases and results for n = 7 (w = 600 mm, b = 4,800 mm)

+		4	Tstiffanar	I		h	This	study	k
(mm)	(mm)	ratio	$H \times B \times t_w \times t_s$	$(\times 10^6 \text{ mm}^2)$	k _{FEA}	Eq. (3)	β/β_{cr}	k _c Eq. (8)	$\frac{k_{FEA}}{k_c}$
<i>t_f</i> (mm) 32	1,500	lpha = 2.5 eta = 0.31	125×190×10×10 135×200×12×12	32.429 47.381	2.22 2.83	2.65 3.66	0.15 0.14	1.94 2.62	1.14 1.08
	2,400	$lpha=4.0\ eta=0.5$	150×230×13×13 175×265×15×15	72.713 125.402	1.86 2.74	2.10 3.34	0.20 0.17	1.65 2.53	1.13 1.08
18	4,000	$\begin{array}{c} \alpha = 6.67 \\ \beta = 0.83 \end{array}$	185×280×15×15 225×340×19×19	145.674 286.345	1.32 2.19	1.39 2.37	0.28 0.23	1.19 1.94	1.11 1.13
	6,000	$\begin{array}{c} \alpha = 10.0 \\ \beta = 1.25 \end{array}$	215×320×18×18 255×380×21×21	243.030 419.691	0.95 1.42	0.95 1.43	0.37 0.32	0.87 1.27	1.09 1.12
	9,000	$\begin{array}{c} \alpha = 15.0 \\ \beta = 1.88 \end{array}$	265×400×22×22	480.322	0.76	0.74	0.46	0.71	1.07
	1,500	$\begin{array}{c} \alpha = 2.5\\ \beta = 0.31 \end{array}$	90×135×8×8	9.457	3.71	4.24	0.13	3.01	1.23
	2,400	$lpha=4.0\ eta=0.5$	110×165×10×10	21.266	3.12	3.41	0.17	2.59	1.20
18	4,000	lpha = 6.67 eta = 0.83	140×210×12×12	46.919	2.40	2.44	0.24	2.01	1.19
	6,000	lpha = 10.0 eta = 1.25	165×245×14×14	80.478	1.74	1.70	0.31	1.50	1.16
18	9,000	$\begin{array}{c} \alpha = 15.0 \\ \beta = 1.88 \end{array}$	180×270×15×15	106.744	1.03	0.98	0.44	0.94	1.10

+		agreat	T_stiffener	Ι.		h	This	study	k m
(mm)	(mm)	ratio	$H \times B \times t_w \times t_s$	$(\times 10^6 \text{ mm}^2)$	k _{FEA}	Eq. (3)	β/β_{cr}	k _c Eq. (8)	$\frac{k_{FEA}}{k_c}$
<i>t_f</i> (mm) 32 18	1,500	lpha = 2.5 eta = 0.25	125×190×10×10 135×200×12×12	32.429 47.381	2.21 2.81	2.64 3.65	0.12 0.11	1.94 2.61	1.14 1.08
	2,400	$lpha=4.0\ eta=0.4$	150×230×13×13 175×265×15×15	72.713 125.278	1.85 2.72	2.09 3.33	0.16 0.14	1.64 2.53	1.13 1.08
t _f (mm) 32	4,000	$\begin{array}{c} \alpha = 6.67 \\ \beta = 0.67 \end{array}$	185×280×15×15 225×340×19×19	145.525 285.997	1.30 2.17	1.38 2.35	0.22 0.19	1.18 1.92	1.10 1.13
	6,000	$\begin{array}{c} \alpha = 10.0 \\ \beta = 1.0 \end{array}$	215×320×18×18 255×380×21×21	242.745 419.153	0.93 1.40	0.94 1.42	0.29 0.26	0.86 1.26	1.08 1.11
	9,000	$\begin{array}{c} \alpha = 15.0 \\ \beta = 1.5 \end{array}$	265×400×22×22	479.695	0.74	0.71	0.37	0.69	1.07
	1,500	$\begin{array}{c} \alpha = 2.5\\ \beta = 0.25 \end{array}$	90×135×8×8	9.457	3.69	4.22	0.11	3.0	1.23
	2,400	$lpha=4.0\ eta=0.4$	110×165×10×10	21.248	3.09	3.39	0.14	2.58	1.20
18	4,000	lpha = 6.67 eta = 0.67	140×210×12×12	46.870	2.37	2.43	0.19	2.0	1.19
	6,000	$\begin{array}{c} \alpha = 10.0 \\ \beta = 1.0 \end{array}$	165×245×14×14	80.383	1.71	1.68	0.25	1.48	1.15
	9,000	$ \begin{array}{c} \alpha = 15.0 \\ \beta = 1.5 \end{array} $	180×270×15×15	106.611	0.99	0.95	0.35	0.91	1.09

Table 5. Analysis cases and results for n = 9 (w = 600 mm, b = 6,000 mm)

Fig. 7. β / β_{cr} vs. k_{FEA} / k_f

4.2 좌굴계수식 제안

Fig. 7로부터 합리적인 좌굴계수식의 도출을 위해서 는 식 (3)의 k_f 식에 수정계수가 필요함을 보여준다. 곡 선접합(curve fitting)으로부터 $\lambda_f = 18.8$ 과 $\lambda_f = 33.3$ 의 평균값에 해당하는 수정계수식을 도출한 후, 안전율을 감안하되 λ_f 가 작을수록 k_{FEA}/k_f 비가 더 작은 값을 보 이므로 $\lambda_f = 18.8$ 의 경우를 포괄하도록 최종 수정계수 식(c_c)을 도출하였다. 세장비 $\lambda_f = 18.8$ 은 항복강도 460 MPa까지의 강박스거더에서 최소 세장비 수준으로 생 각된다.

β/β_{cr} ≤ 1.0일 때 적용되는 보정계수 c_c는 n ≤ 3과
 n > 3으로 구분하여 도출하였으며, 이를 적용한 좌굴계
 수 k_c는 다음 식 (8), 식 (9a) 및 식 (9b)와 같다.

•
$$\beta/\beta_{cr} \leq 1.0: k_c = k_f \cdot c_c \leq 4.0$$
 (8)

$$n \le 3: c_c = \min(0.7[(n+1)\frac{\beta}{\beta_{cr}}]^{\frac{1}{n+1}}, 1.0)$$
 (9a)

$$n > 3: c_c = \min(0.7[(n+1)\frac{\beta}{\beta_{cr}}]^{0.25}, 1.0)$$
 (9b)

•
$$\beta/\beta_{cr} > 1.0: k_c = k_{f,\min}$$
 (10)

Fig. 7(a)-(d)에 보정계수 c_c를 도시하였다. 한편 β/β_{cr} > 1.0일 때 식 (10)의 k_{f,min}은 앞의 식 (5b)와 같
다. Table 2–Table 5에 제시한 k_{FEA}/k_c 값으로부터 k_c 식
은 다수의 보강재가 설치된 압축판에서 좌굴계수를 합
당하게 추정할 수 있을 것으로 판단된다.

본 연구에서 n = 1과 2에 대해 별도의 좌굴해석을 수 행하지 않았으나, 식 (9a)의 c_c 는 Wang *et al.*^[8]이 제안 한 식 (7)의 c_f 와 단지 1 % 차이를 보인다. 따라서 c_c 는 n = 1과 2에서도 타당할 것이다.

5. 결론

본 연구에서는 폭이 큰 압축판을 고려하기 위해 다수 의 T-단면 보강재로 보강된 압축판의 좌굴계수식을 제안 하기 위한 연구를 수행하였다. 주요 결론은 다음과 같다.

- (1) 광폭의 압축판을 고려하고 판의 형상비에 따른 합리적인 보강재 제원을 결정할 수 있도록 보강 재 개수(n)는 9개까지, 서브패널의 형상비(α)는 15까지, 그리고 판의 폭-두께비(λ_i)는 18.8과 33.3의 조건에 대해 좌굴고유치해석을 수행하였 다. 에너지법으로부터 유도된 식 (3)의 좌굴계수 k_i와 FE 해석에 의한 좌굴계수 k_{FEA}와의 차이를 보정하기 위한 보정계수 c_i를 n ≤ 3과 n > 3에 대 해 구분하여 식 (9a)와 식 (9b)로 제안하였다. 이 로부터 좌굴계수(k_i)는 β/β_{cr} ≤ 1.0과 β/β_{cr} > 1.0 일 때 각각 식 (8)과 식 (10)으로부터 구한다.
 - (2) 좌굴계수 산정 시 AASHTO 기준은 T-보강재의 단면2차모멘트(*I*_s)를 보강재의 하단(즉, 압축플 랜지의 면)에 대해 산정하도록 규정하고 있는데, 이는 압축판과 보강재들이 이루는 총단면의 도 심이 압축판 내에 있다는 가정에 의한 것이다. 그 러나, 보강재 개수가 많은 경우 및 보강재 제원이 커지는 경우(형상비 증가에 따라) 총단면의 도심 이 T-보강재의 스템 내에 있게 된다. 이 경우, 도 심이 압축판의 표면에 가까운 경우를 제외하면 도심에 대해 보강재와 서브패널이 이루는 단면 의 단면2차모멘트 *I_s*(Fig. 5 참조)가 *I_s*보다 통상 작게 된다. 이에 따라 *k_f* 산정시 T-보강재의 단면 2차모멘트는 *I_s와 I_{sc}* 중 작은 값을 적용하는 것 이 타당한 것으로 나타났다.
- (3) 제안한 좌굴계수식(k_c)이 AASHTO 기준에서 정 의한 보강판의 압축강도를 합당하게 평가하는지 여부는 초기처짐과 잔류응력을 고려한 비선형해 석으로부터 추후 검증할 예정이다.

참고문헌(References)

- Narayanan, R. (1983) *Plated Structures: Stability and Strength*, Applied Science Publishers, London and New York.
- [2] Yoo, C.H., Choi, B.H., and Ford, E.M. (2001) Stiffness Requirements for Longitudinally Stiffened Box-girder Flanges, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.127, No.6, pp.705-711.
- [3] Kim, K.S. (2019) In-Plane Compressive Strength of

Hybrid Steel Stiffened Plate with Single Stiffener, Journal of Korean Society of Steel Construction, KSSC, Vol.31, No.1, pp.65-73 (in Korean).

- [4] American Association of State Highway and Transportation Officials (2020) AASHTO LRFD Bridge Design Specifications (9th Ed.), AASHTO, USA.
- [5] Korea Construction Standards Center (2024) Design Standards for Steel Members(Load and Resistance Factored Design), KDS 14 31 10, Ministry of Land, Infrastructure and Transport (in Korean).
- [6] Choi, B.-H. (2002) Design Requirements for Longitudinal Stiffeners for Horizontally Curved Box Girders, Ph.D. Dissertation, Auburn University, USA.
- [7] Timoshenko, S., and and Gere, J.M. (1961) Theory of

Elastic Stability (2nd Ed.), McGraw-Hill, USA.

- [8] Wang, L., Park, Y.M., Liu, Y., and Choi, B.H. (2021) Proposal of Buckling Coefficient Equation Considering Aspect Ratio of Compression Plates Stiffened with Tees, *Journal of Korean Society of Steel Construction*, KSSC, Vol.33, No.5, pp.275-283 (in Korean).
- [9] Dassault Systèmes Simulia (2022) Abaqus Analysis User's Manual, DSS, USA.
- [10] Hall, D.H., and Yoo, C.H. (1998) Improved Design Specifications for Horizontally Curved Steel Girder Highway Bridges, NCHRP Project 12-38, National Cooperative Highway Research Program, USA, Appendix D.

핵심용어: 압축판, 다수 보강재, 좌굴계수식, 형상비, 보강재 단면2차모멘트

요 약: 본 연구에서는 폭이 큰 압축판에서 다수의 T-단면 보강재로 보강된 판의 좌굴계수식을 제안하기 위한 연구를 수행하였다. AASHTO LRFD 교량설계기준의 해설부 C6.11.11.2에서 보강재 5개까지 갖는 판에 대해 좌굴계수식을 제시하고 있다. 이 식은 Timoshenko and Gere의 근사적인 좌굴계수식(k_f)을 토대로 한 것이나, 형상비와 좌굴계수의 크기를 감안한 보강재의 제원을 결정할 수 없는 문제가 있다. 본 연구에서는 보강재 9개까지의 판에 대해 형상비와 폭-두께비 그리고 보강재 제원을 변수로 하여 고유치해석을 수행하였다. FE 해석에 의한 좌굴계수를 k_f 식과 비교함으로써 수정계수(c_c)를 보강재 개수(n)에 따라 $n \leq 3$ 과 n > 3에 대해 각각 도출하고 이를 반영한 좌굴계수식을 제안하였다. 한편, 좌굴계수 산정 시 보강재의 단면2차모멘트 산정 방안에 대해 제안하였다.