Vol.35, No.5, pp.239-248, October, 2023

T-형 보강재로 보강된 판의 압축강도 산정에 형상비를 고려한 좌굴계수 식의 적용성 평가

박용명1*

1교수, 부산대학교, 토목공학과

Applicability of the Buckling Coefficient Equation with Aspect Ratio for Compressive Strength Evaluation of Stiffened Plates with Tee

Park, Yong Myung^{1*}

¹Professor, Dept. of Civil Engineering, Pusan National University, Busan, 46241, Korea

Abstract - Wang *et al.* recently proposed a buckling coefficient equation(k_{fc}) to determine a reasonable size of stiffener considering the aspect ratio(β) in longitudinally stiffened plates. In this study, a series of numerical analysis was conducted on whether the compressive strength stipulated in the AASHTO LRFD bridge design specifications is reasonably estimated when the k_{fc} equation is applied. The number of stiffener was considered up to 3. As major variables, the aspect ratio and plate width-to-thickness ratio in combination with flexural stiffness of stiffeners were considered to include compact, non-compact and slender plates. As a result of evaluating compressive strength from nonlinear analysis, when $\beta < 1.4\beta_{cr}$ (β_{cr} : critical aspect ratio corresponding to minimum value of k_{fc}), the final deformation showed one half sine-wave form and the compressive strength of the AASHTO standards was obtained. On the other hand, when $\beta \ge 1.4\beta_{cr}$, it showed a deformation in the form of two half waves and did not reach the compressive strength of the design standards. Accordingly, it is considered that a regulation on the maximum spacing of transverse stiffeners would be necessary.

Keywords - Stiffened plate, Aspect ratio, Tee stiffener, Buckling coefficient, Compressive strength

1.서론

박스거더교의 압축플랜지는 좌굴강도의 향상을 위 해 Fig. 1과 같이 종방향 보강재를 통상 설치한다. AASHTO LRFD 교량설계기준^[1](이하 AASHTO LRFD 기준)에서는 횡비틀림좌굴에 유리한 T-형 보강재를 사 용토록 하고 있으며, 보강재의 단면2차모멘트(*I*_s)에 따 른 보강판의 좌굴계수 식을 본문 6.11.11.2에 제시하고 있다. 이 식은 종래의 설계기준인 AASHTO Standard Specifications^[2]에서 보강재 개수(*n*)가 5개 이하일 때

Copyright © 2023 by Korean Society of Steel Construction *Corresponding author.

Tel. +82-51-510-2350 Fax. +82-51-513-9596 E-mail. ympk@pusan.ac.kr 적용하는 좌굴계수 식을 그대로 가져온 것이다.

그러나, *n* ≥ 3인 경우 보강재의 제원이 매우 커지는 문제점이 있는데, 그 이유는 횡방향 보강재(transverse stiffener)에 의한 구속 효과를 무시하고 종방향 보강재 가 매우 길다고 가정하였기 때문이다. 즉, 보강판의 형 상비(aspect ratio) β(= *a/b*, Fig. 1 참조)가 무한한 값으 로 고려됨에 따라 보강재 제원이 과도하게 되어 AASHTO LRFD 본문 기준에서는 *n* ≤ 2로 제한하고 있 다. 한편, AASHTO LRFD 해설부 C6.11.11.2에서는 *n* ≤ 5일 때 적용할 수 있는 별도의 좌굴계수 식을 제시하 고 있다. 하지만 이 식은 본 논문의 2.1.2에서 제시한 바 와 같이 보강재의 크기를 유연하게 결정할 수 없는 등 의 문제점이 있다.

보강판의 좌굴계수 식에 대한 AASHTO 기준의 문제 점을 보완하고자 Wang et al.^[3]은 T-형 보강재로 보강한 판에 대해 형상비를 고려한 좌굴계수 식을 제시하였다. 이들은 에너지법으로 유도된 식의 타당성을 평가하기

Note.-Discussion open until April 30, 2024. This manuscript for this paper was submitted for review and possible publication on July 12, 2023; revised on September 16, 2023; approved on September 18, 2023.

위해 n ≤ 3인 경우에 대해 좌굴고유치해석을 수행하고, 그 결과를 토대로 보정계수를 적용함으로써 최종 좌굴 계수 식을 제안하였다.

한편, AASHTO LRFD 기준과 국내 강구조부재설계 기준인 KDS 14 31 10^[4]은 보강판의 압축강도를 조밀 (λ_p) 및 비조밀 한계세장비(λ_r)에 따라 산정하는 식을 제 시하고 있는데, 이들 한계세장비는 좌굴계수 k의 함수 이다. 따라서 보강판의 압축강도를 합당하게 예측하기 위해서는 k 값을 합리적으로 평가하여야 한다.

본 연구의 목적은 Wang *et al.*이 제안한 판의 형상비 를 고려하는 좌굴계수 식의 적정성을 평가하는 것이다. 절차는 이들이 제안한 식으로 *k* 값을 산정하고 이로부터 AASHTO LRFD 기준의 λ_p와 λ_r을 계산한 후 이를 토대 로 계산된 보강판의 압축강도를 전산해석에 의한 압축 강도와 비교하는 과정으로 수행하였다. 보강판의 압축 강도는 재료 및 기하비선형해석으로 평가하였으며, 보 강재 3개까지에 대해 판의 형상비, 폭-두께비(또는 판 의 세장비), 그리고 보강재의 휨강성을 변수로 하였다.

Fig. 1. Longitudinally stiffened plate (n = 2)

2. 좌굴계수 및 압축강도에 관한 기준

2.1 AASHTO LRFD 기준의 좌굴계수 식

2.1.1 본문 6.11.11.2

AASHTO LRFD 기준^[1] 본문 6.11.11.2의 보강재 단 면2차모멘트(*I_s*)와 좌굴계수 관계는 AASHTO Standard Specifications의 다음 식 (1a)와 식 (1b)를 토대로 하였다.

$$k = \left(\frac{8I_s}{wt_f^3}\right)^{1/3} \qquad (n=1) \tag{1a}$$

$$k = \left(\frac{I_s}{0.07n^4 w t_f^3}\right)^{1/3} \quad (n = 2, 3, 4, 5) \tag{1b}$$

여기서, n: 보강재 개수, w: 서브패널 폭, t_f: 압축플랜지 두께, I_s: 압축플랜지 면에 대한 보강재의 단면2차모멘 트이다.

전술한 바와 같이 식 (1a)와 식 (1b)는 보강재가 매우 길다는 가정(즉 형상비 = ∞)으로부터 도출된 것이다. 이로 인해 특히 *n* ≥ 3일 때 보강재 제원이 지나치게 커 지는 문제가 있어 본문 기준은 *n* ≤ 2로 제한하고 있다.

2.1.2 해설부 C6.11.11.2

상기의 문제점을 보완하고자 AASHTO LRFD 기준^[1] 의 해설부 C6.11.11.2에 다음 식을 제시하고 있다.

$$k = \frac{(1+\beta^2)^2 + 87.3}{(n+1)^2\beta^2[1+0.1(n+1)]} \le 4.0$$
(2)

여기서, β: 보강판의 형상비(= *a*/*b*), *a*: 횡방향 보강재 간격, *b*: 압축플랜지 폭이다.

식 (2)는 *n* ≤ 5이고 *β* ≤ 3인 조건에서 적용 가능하며 보강재의 단면2차모멘트는 식 (3)을 만족하여야 한다.

$$I_s = 8wt_f^3 \tag{3}$$

식 (3)의 *I*_s 요건은 서브패널의 형상비 *α*(= *a/w*)가 4일 때 *k* 값이 약 4.0이 되도록 결정한 것이다. 따라서 식 (2) 는 *α* < 4일 때 임의의 좌굴계수 크기, 즉 *k* < 4.0에 상응 하는 보강재 제원을 고려할 수 없고, 이로 인해 형상비 가 작을수록 불필요하게 큰 보강재를 적용하게 된다. 더욱이 *β* > 3인 경우에는 식 (2)의 적용이 제한된다.

2.2 Wang et al.의 좌굴계수 제안식

Wang *et al.*^[3]은 에너지법으로부터 유도된 이론적 좌 굴계수 식^{[5],[6]}의 검증을 위해 서브패널의 폭-두께비(λ_f = w/t_f), 형상비, 그리고 보강재의 휨강성을 변수로 하 여 보강재 3개까지에 대해 좌굴고유치해석을 수행하였 다. 수치해석 결과를 바탕으로 에너지법으로부터 유도 된 좌굴계수 식에 수정계수(c_f)를 도입하여 최종 좌굴계 수 식(여기서, AASHTO LRFD 기준의 k와 구분하기 위 하여 k_{fc} 로 표기하기로 함)을 식 (4a) 및 식 (4b)로 제안 하였다.

•
$$\beta/\beta_{cr} \le 1.0$$
일 때:

$$k = -\frac{(1+\beta^2)^2 + (n+1)\gamma}{(n+1)^2} = 0 \le 4.0$$

$$k_{fc} = \frac{(1+\beta)^{-1} + (n+1)\gamma}{(n+1)^2 \beta^2 [1+(n+1)\delta]} \cdot c_f \le 4.0$$
(4a)

$$\beta/\beta_{cr} > 1.0 일 때:$$

$$k_{fc} = \frac{2\left[1 + \sqrt{1 + (n+1)\gamma}\right]}{(n+1)^2 [1 + (n+1)\delta]}$$
(4b)

여기서, β_{cr}은 좌굴계수 k_{fc}가 최소값을 보이는 한계 형 상비로서 다음과 같다.

$$\beta_{cr} = \sqrt[4]{1 + (n+1)\gamma} \tag{5}$$

$$\gamma = \frac{EI_s}{bD} \tag{6}$$

$$\delta = \frac{A_l}{bt_f} \tag{7}$$

$$c_f = \left(\frac{\beta}{\beta_{cr}}\right)^{\frac{1}{n+1}} \tag{8}$$

그리고, *D* = *Et*³/12(1 - *v*²): 판의 휨강성, *v*(= 0.3): 포아 송 비, *A_i*: 보강재 1개의 단면적이며, *γ*와 δ는 각각 보강 재 1개의 '휨강성비'와 '단면적비'이다.

2.3 AASHTO LRFD 기준의 압축강도

본 기준^[1]의 6.11.8.2에서 비틀림 영향을 포함한 플랜 지의 공칭압축강도 *F*_m를 식 (9)로 제시하고 있다.

$$F_{nc} = F_{cb} \sqrt{1 - \left(\frac{f_v}{\phi_v F_{cv}}\right)^2} \tag{9}$$

여기서, *F_{cb}*: 압축력만에 의한 플랜지 좌굴강도, *f_v*: St. Venant 비틀림에 의한 플랜지의 전단응력, *F_{cv}*: 전단에 대한 플랜지 좌굴강도, *φ_v*: 전단에 대한 저항계수이다.

본 기준에서 서브패널의 폭-두께비(λ_f)에 따라 *F*_{cb}를 다음과 같이 규정하고 있다.

• $\lambda_f \leq \lambda_p$ 일 때: $F_{cb} = R_b R_h F_{yc} \Delta$ (10a)

$$\lambda_{p} < \lambda_{f} \le \lambda_{r} \ g \ \mathfrak{m}:$$

$$F_{cb} = R_{b}R_{h}F_{yc} \left[\Delta - \left(\Delta - \frac{\Delta - 0.3}{R_{h}} \right) \left(\frac{\lambda_{f} - \lambda_{p}}{\lambda_{r} - \lambda_{p}} \right) \right] (10b)$$

$$\lambda_f > \lambda_r \mathfrak{G} \mathfrak{m};$$

$$F_{cb} = \frac{0.9ER_bk}{\lambda_f^2} \tag{10c}$$

여기서,

$$A_p = 0.57 \sqrt{\frac{Ek}{F_{yc}\Delta}}$$
(11a)

$$\lambda_r = 0.95 \sqrt{\frac{Ek}{F_{yr}}} \tag{11b}$$

$$\Delta = \sqrt{1 - 3\left(\frac{f_v}{F_{yc}}\right)^2} \tag{12}$$

이고 *R_b*: 압축플랜지 응력감소계수, *R_h*: 하이브리드 계 수, *E*: 강재의 탄성계수(= 210,000 MPa), *F_{yc}*: 압축플랜 지의 항복강도, *F_{yr}*: 잔류응력 효과를 고려한 항복강도 이다.

본 논문에서는 $R_b = 1.0$, $R_h = 1.0$ 이고 비틀림 영향이 없이 압축력만 작용하는 경우로 국한하기로 한다. 이 때 $f_v = 0$ 이므로 식 (12)의 $\Delta = 1.0$ 이 되고 식 (9)와 식 (10a) -식 (10c)에서 $F_{nc} = F_{cb}$ 가 된다.

3. 전산해석 방안

3.1 전산 모델

보강판의 압축강도는 ABAQUS 프로그램^[7]을 사용 하여 재료 및 기하비선형해석으로부터 평가하였다. Fig. 2는 경계조건과 하중을 포함한 전산모델의 개요도 이다. 여기서, *U*는 이동변위, *R*은 회전변위이다. Line A에는 *x*-방향 이동변위(*U_x*)를 동일하게 적용하기 위해 'Coupling: kinematic' 옵션을 적용하였다. 본 해석 모델 은 4변 단순지지 조건에 해당하므로 종방향으로 인접패 널에 의한 '연속효과(continuity effect)'를 고려하지 않 아 안전측의 압축강도로 고려된다. 하중은 플랜지와 T-형 보강재에 각각 판두께에 해당하는 선하중을 재하하 였는데, 이는 단위 압축응력(1 MPa)에 해당하는 셈이다. 강재는 플랜지 및 보강재 모두 HSB460을 고려하였 으며, 응력-변형률 선도는 Fig. 3와 같이 이상화하였다. 재료 및 기하비선형해석 시 하중 증가는 Rik's method 를 적용하였다. 항복기준은 Von Mises 기준을 적용하 였고 변형률경화 구간에는 isotropic strain hardening 모 델을 사용하였다. 플랜지 및 T-형 보강재 모두 S4R 쉘 요소로 모델링하였다. 본 연구에서 고려한 보강판의 서 브패널 폭(w)은 *n* = 1일 때 800 mm이고 *n* = 2,3일 때 600 mm이다. 전산 쉘요소 모델에서 플랜지 부의 개별 요소의 크기는 20 mm × 20 mm로 충분히 세분화하였 으며, T-형 보강재도 비슷한 요소 크기로 분할하였다.

Fig. 3. Stress-strain curve for HSB460 steel

3.2 잔류응력 및 초기처짐

Chacón *et al.*^[8]은 용접 제작한 I-거더에 대해 다양한 잔류응력 모델로 휨강도 비교 평가를 수행하였는데, 이 에 따르면 잔류응력 모델에 따른 종국강도의 차이는 크 지 않다. 본 연구에서는 플랜지와 T-형 보강재 스템의 용접접합에 의한 잔류응력을 Fig. 4와 같이 고려하였 다. 본 모델은 Chacón *et al.*이 비교 해석에 고려한 모델 중 Granath의 모델을 기반으로 한 것이다. 용접 잔류응 력의 크기는 인장 잔류응력 (+)*F_r*는 0.9*F_y*(= 414 MPa) 으로 하였고 폭은 편측당 1.2*t_f*로 하였다. 이 때 압축 잔 류응력 (-)*F_{rc}*의 크기는 자체 평형(self-equilibrium)으로 부터 결정된다.

초기처짐은 보강재의 초기처짐과 보강판의 전체적인 초기처짐을 고려하였다. 보강재의 초기처짐은 Fig. 5(a) 와 같이 중앙점을 기준으로 1/50 rad 회전된 것으로 고 려하였다. 보강판의 전체적인 초기처짐은 Fig. 5(b)와 같 이 e_0 만큼 면외 초기처짐으로 고려하였으며, Eurocode 3^[9]에 기반하여 $e_0 = \min(a/400, b/400)으로 하였다. 보강$ 재의 초기처짐은 전산모델 작성 시 직접 정의하였으며,판의 전체적인 초기처짐은 좌굴고유치해석을 수행한 $후 첫번째 좌굴모드를 <math>e_0$ 만큼 스케일하여 모사하였다.

Fig. 5. Initial imperfection model

4. 압축강도 해석 및 결과 분석

4.1 해석 경우

본 연구에서는 종방향 보강재 개수(n)를 3개까지 고 려하였다. 주요 변수로 보강판의 형상비(β), 서브패널 의 폭-두께비(λ_{j}), 보강재의 휨강성비(γ)를 고려하였다. 판의 폭-두께비와 보강재의 휨강성을 조합함으로써 조 밀, 비조밀 및 세장판(slender plate)의 범위를 포함하였 다. 이로부터 결정한 해석 경우는 보강재 개수별로 Table 1에서 Table 3과 같다. T-형 보강재의 제원 표기 는 T-형강의 표기 방식에 따른 것이며, 보강재의 플랜

Table 1. Analysis cases and results for n = 1 (w = 800 mm, b = 1,600 mm)

$t_f (\text{mm}) \\ (\lambda_f)$	a (mm)	Aspect ratio	T-stiffener $H \times B \times t_w \times t_s$	β/β_{cr}	k _{FEA}	<i>k_{fc}</i> : Eq. (4) (<i>k</i> : Eq. (1a))	λ_p	λr	$\overline{\lambda_f}$	F _{nc} (MPa)	F _{u,FEA} (MPa)	$\frac{F_{u,FEA}}{F_{nc}}$
42 (19.0)	1,200	$\beta = 0.75$ $\alpha = 1.5$	100×150×9×9 140×210×12×12	0.54 0.41	2.07 3.26	1.57 3.14	15.3 21.6	30.4 40.3	1.25 0.88	425.5 460.0	455.4 470.9	1.07 1.02
	1,600	$\beta = 1.0$ $\alpha = 2.0$	100×150×9×9 140×210×12×12	0.72 0.55	1.65 2.69	1.33 2.30	14.0 18.5	28.0 36.8	1.36 1.03	410.5 455.7	444.7 461.7	1.08 1.01
	2,400	$\beta = 1.5$ $\alpha = 3.0$	145×215×12×12	0.81	2.14	1.91	16.8	33.5	1.13	441.7	455.5	1.03
	3,600	$\beta = 2.25$ $\alpha = 4.5$	150×225×13×13	1.16	2.22	2.09	17.6	35.1	1.08	448.6	464.2	1.03
	4,400*	$\beta = 2.75$ $\alpha = 5.5$	150×225×13×13	1.42	2.41	2.09 (2.13)	17.6	35.1	1.08	448.6	422.9	0.94*
32 (25.0)	1,200	$\beta = 0.75$ $\alpha = 1.5$	85×125×8×8 115×170×10×10	0.52 0.41	2.35 3.62	1.72 3.24	16.0 21.9	31.8 43.7	1.57 1.14	381.4 440.5	417.1 453.3	1.09 1.03
	1,600	$\beta = 1.0$ $\alpha = 2.0$	85×125×8×8 115×170×10×10	0.70 0.55	1.82 2.94	1.42 2.37	14.5 18.7	28.9 37.3	1.72 1.33	359.5 413.6	401.1 441.8	1.12 1.07
	2,400	$\beta = 1.5$ $\alpha = 3.0$	120×180×10×10	0.79	2.30	1.99	17.2	34.2	1.46	396.7	426.8	1.08
	3,600	$\beta = 2.25$ $\alpha = 4.5$	125×185×11×11	1.14	2.32	2.18	18.0	35.8	1.39	405.7	431.3	1.06
	4,500*	$\beta = 2.81$ $\alpha = 5.63$	125×185×11×11	1.42	2.60	2.18 (2.19)	18.0	35.8	1.39	405.7	376.1	0.93*
24 (33.3)	1,200	$\beta = 0.75$ $\alpha = 1.5$	65×100×6×6 90×140×8×8	0.54 0.42	2.26 3.79	1.60 3.17	15.4 21.7	30.7 43.2	2.16 1.54	272.2 385.3	322.0 413.9	1.18 1.07
	1,600	$\beta = 1.0$ $\alpha = 2.0$	65×100×6×6 90×140×8×8	0.72 0.55	1.74 3.02	1.35 2.32	14.2 18.6	28.2 37.0	2.36 1.80	229.6 349.1	282.3 397.7	1.23 1.14
	2,400	$\beta = 1.5$ $\alpha = 3.0$	95×145×8×8	0.80	2.33	1.98	17.1	34.1	1.95	328.5	375.7	1.14
	3,600	$\beta = 2.25$ $\alpha = 4.5$	100×150×9×9	1.14	2.36	2.21	18.1	36.1	1.84	343.0	389.1	1.13
	4,500*	$\beta = 2.81$ $\alpha = 5.63$	100×150×9×9	1.42	2.71	2.21 (2.19)	18.1	36.1	1.84	343.0	291.6	0.85*

*Minimum a showing one cycle sine wave for 1st buckling mode

지 폭(*B*)은 스템 높이(*H*)의 1.5배 내외로 하였다. β_c·은 식 (5)로 정의된 한계 형상비이다.

Table 1–Table 3에서 *k_{FEA}*는 ABAQUS 프로그램의 고유치해석에 의한 좌굴계수이다. *k_{fc}*는 Wang *et al*.이 제안한 식 (4a) 및 식 (4b)로부터 산정한 것이며, *λ_p*와 *λ_r* 은 식 (11a)와 식 (11b)에 *k_{fc}*를 적용하여 산정한 것이다. F_{nc} 는 식 (9)에서 $f_v = 0$ (또한 $\Delta = 1.0$)일 때 AASHTO LRFD 기준의 압축강도이며, $F_{u,FEA}$ 는 비선형해석에 의 한 압축강도이다.

첫번째 좌굴모드가 one half sine-wave이고 이를 초 기처짐으로 적용하였을 때 비선형해석으로부터 종국변 형 형상 역시 one half wave 형태를 보였는데, 그 예를

Table 2. Analysis cases and results for n = 2 (w = 600 mm, b = 1,800 mm)

$t_f (\text{mm}) \\ (\lambda_f)$	a (mm)	Aspect ratio	T-stiffener $H \times B \times t_w \times t_s$	β/β_{cr}	k _{FEA}	<i>k_{fc}</i> : Eq. (4) (<i>k</i> : Eq. (1b))	λ_p	λr	$\overline{\lambda_f}$	F _{nc} (MPa)	F _{u,FEA} (MPa)	$\frac{F_{u,FEA}}{F_{nc}}$
32 (18.8)	1,200	$\beta = 0.67$ $\alpha = 2.0$	100×150×9×9 125×185×11×11	0.38 0.31	2.08 3.2	1.66 3.08	15.7 21.4	31.3 42.6	1.19 0.88	432.9 460.0	450.5 463.3	1.04 1.01
	1,600	$\beta = 0.89$ $\alpha = 2.67$	110×165×10×10 130×195×11×11	0.47 0.41	1.82 2.55	1.45 2.22	14.7 18.1	29.2 36.1	1.28 1.03	421.3 455.4	439.9 451.8	1.04 0.99
	2,400	$\beta = 1.33$ $\alpha = 4.0$	145×220×12×12	0.55	1.98	1.73	16.0	31.9	1.17	436.3	436.4	1.00
	4,000	$\beta = 2.22$ $\alpha = 6.67$	155×230×13×13	0.86	1.42	1.35	14.2	28.2	1.33	414.8	417.7	1.01
	6,500*	$\beta = 3.61$ $\alpha = 10.83$	155×230×13×13	1.40	1.63	1.36 (1.53)	14.2	28.3	1.32	415.5	390.7	0.94*
24 (25.0)	1,200	$\beta = 0.67$ $\alpha = 2.0$	80×120×7×7 100×150×9×9	0.39 0.31	2.18 3.63	1.63 3.14	15.5 21.6	31.0 43.0	1.61 1.16	375.4 438.0	412.5 446.9	1.10 1.02
	1,600	$\beta = 0.89$ $\alpha = 2.67$	85×130×8×8 105×155×9×9	0.48 0.41	1.81 2.81	1.36 2.27	14.2 18.3	28.3 36.6	1.76 1.36	354.2 409.6	395.7 428.5	1.12 1.05
	2,400	$\beta = 1.33$ $\alpha = 4.0$	115×175×10×10	0.55	2.1	1.75	16.1	32.1	1.55	383.3	400.5	1.05
	4,000	$\beta = 2.22$ $\alpha = 6.67$	125×190×11×11	0.85	1.51	1.41	14.5	28.8	1.73	358.6	385.4	1.07
	6,700*	$\beta = 3.72$ $\alpha = 11.17$	125×190×11×11	1.42	1.72	1.42 (1.56)	14.5	28.9	1.72	359.5	331.9	0.92^{*}
18 (33.3)	1,200	$\beta = 0.67$ $\alpha = 2.0$	65×100×6×6 80×125×7×7	0.38 0.32	2.44 3.88	1.76 3.15	16.2 21.6	32.2 43.1	2.06 1.54	299.4 384.6	364.2 415.8	1.22 1.08
	1,600	$\beta = 0.89$ $\alpha = 2.67$	70×105×6×6 85×125×7×7	0.48 0.41	1.88 2.96	1.38 2.29	14.3 18.4	28.5 36.7	2.33 1.81	234.7 347.5	310.9 395.5	1.32 1.14
	2,400	$\beta = 1.33$ $\alpha = 4.0$	95×145×8×8	0.54	2.32	1.88	16.7	33.3	2.00	319.8	366.2	1.15
	4,000	$\beta = 2.22$ $\alpha = 6.67$	110×165×10×10	0.77	1.85	1.70	15.9	31.6	2.10	289.2	339.8	1.18
	7,300*	$\beta = 4.06$ $\alpha = 12.17$	110×165×10×10	1.41	2.01	1.65 (1.76)	15.6	31.2	2.13	280.7	267.4	0.95*

*Minimum a showing one cycle sine wave for 1st buckling mode

$t_f (\text{mm}) \\ (\lambda_f)$	a (mm)	Aspect ratio	T-stiffener $H \times B \times t_w \times t_s$	β/β_{cr}	k _{FEA}	<i>k_{fc}</i> : Eq. (4)	λ _p	λr	$\overline{\lambda_f}$	F _{nc} (MPa)	F _{u,FEA} (MPa)	$\frac{F_{u,FEA}}{F_{nc}}$
32 (18.8)	1,200	$\beta = 0.5$ $\alpha = 2.0$	105×160×9×9 125×190×11×11	0.28 0.23	2.14 3.16	1.80 3.14	16.3 21.6	32.5 43.0	1.15 0.87	439.5 460.0	450.0 461.2	1.02 1.00
	1,600	$\beta = 0.67$ $\alpha = 2.7$	140×210×12×12	0.28	2.90	2.70	20.0	39.9	0.94	460.0	453.7	0.99
	2,400	$\beta = 1.0$ $\alpha = 4.0$	145×220×13×13	0.41	1.86	1.61	15.5	30.8	1.21	430.3	427.3	0.99
	4,000	$\beta = 1.67$ $\alpha = 6.7$	170×255×14×14	0.59	1.26	1.17	13.2	26.2	1.42	401.1	395.7	0.99
	5,400	$\beta = 2.25$ $\alpha = 9.0$	180×270×15×15	0.75	1.03	1.00	12.2	24.3	1.54	384.9	381.3	0.99
	10,000*	$\beta = 4.17$ $\alpha = 16.67$	180×270×15×15	1.39	1.10	0.93	11.7	23.4	1.60	377.0	363.2	0.96*
24 (25.0)	1,200	$\beta = 0.5$ $\alpha = 2.0$	85×125×7×7 100×155×9×9	0.28 0.23	2.28 3.58	1.77 3.21	16.2 21.8	32.3 43.5	1.54 1.15	384.5 439.7	413.3 444.4	1.07 1.01
	1,600	$\beta = 0.67$ $\alpha = 2.7$	110×165×10×10	0.29	3.13	2.64	19.8	39.4	1.26	423.4	431.6	1.02
	2,400	$\beta = 1.0$ $\alpha = 4.0$	120×180×10×10	0.40	2.06	1.71	15.9	31.7	1.57	380.7	396.6	1.04
	4,000	$\beta = 1.67$ $\alpha = 6.7$	140×210×12×12	0.57	1.44	1.30	13.9	27.7	1.80	348.7	367.9	1.06
	5,400	$\beta = 2.25$ $\alpha = 9.0$	150×225×13×13	0.72	1.17	1.12	12.9	25.7	1.94	329.3	346.6	1.05
	10,500*	$\beta = 4.38$ $\alpha = 17.5$	150×225×13×13	1.40	1.20	1.01	12.2	24.4	2.04	305.4	283.2	0.93*
18 (33.3)	1,200	$\beta = 0.5$ $\alpha = 2.0$	65×100×6×6 80×125×7×7	0.28 0.24	2.33 3.80	1.69 3.15	15.8 21.6	31.5 43.1	2.11 1.54	287.5 384.6	344.2 413.2	1.20 1.07
	1,600	$\beta = 0.67$ $\alpha = 2.7$	90×135×8×8	0.28	3.48	2.79	20.3	40.5	1.64	371.2	404.4	1.09
	2,400	$\beta = 1.0$ $\alpha = 4.0$	100×150×9×9	0.38	2.5	2.03	17.4	34.6	1.92	331.9	369.2	1.11
	4,000	$\beta = 1.67$ $\beta = 6.7$	120×180×10×10	0.54	1.75	1.56	15.2	30.3	2.19	265.4	319.2	1.20
	5,400	$\alpha = 2.25$ $\beta = 9.0$	130×195×11×11	0.67	1.43	1.35	14.2	28.2	2.36	229.6	293.6	1.28
	11,200*	$\beta = 4.67$ $\alpha = 18.67$	130×195×11×11	1.40	1.37	1.15	13.1	26.0	2.55	195.6	231.9	1.19*

Table 3. Analysis cases and results for n = 3 (w = 600 mm, b = 2,400 mm)

*Minimum *a* showing one cycle sine wave for 1st buckling mode

Fig. 6(a)에 제시하였다. 한편, Table 1-Table 3에서 * 마크로 표시한 경우는 첫번째 좌굴모드가 two half wave를 보이는 최소 횡방향 보강재 간격(*a*)에 해당하 는 것이다. 최소 *a* 값은 반복 해석으로부터 근사적으로 결정하였으며, 보강재 개수와 무관하게 β/β_{cr} ≒ 1.4이 었다. 비선형해석에서 이를 초기처짐으로 적용하였을 때 종국변형 형상 또한 two half wave 형태를 보였으 며, Fig. 6(b)에 *n* = 1일 때의 예를 제시하였다. 참고로, β/β_{cr} ≒ 1.4일 때 초기처짐의 크기는 *a*/400이 아닌 *b*/400이 적용된다.

Fig. 6. Deformed shape at maximum loading

4.2 결과 분석

보강재 개수별 *F_{u,FEA}/F_{yc}* 결과를 Fig. 7(a)에서 Fig. 7(c) 에 도시하였다. Fig. 7에서 가로축 λ_j 는 정규화한 세장 비로서 다음 식으로 정의하였다.

$$\overline{\lambda_f} \equiv \frac{\lambda_f}{\lambda_p} \tag{13}$$

식 (11b)에서 Fyr을 0.7Fyc로 설정하면

Fig. 7.
$$F_{u,FEA}/F_{yc}$$
 vs. $F_{nc,AASHTO}$

$$\lambda_r = 0.95 \sqrt{\frac{kE}{F_{yr}}} = 1.992\lambda_p \tag{14}$$

이 된다. $R_b = 1.0$, $R_h = 1.0$ 인 조건에서 AASHTO LRFD 기준에 의한 압축강도와 항복강도의 비 $(F_{nc}/F_{yc}) = \overline{\lambda_j}$ 에 대해 정리하면 식 (10a)-식 (10c)로부터 다음과 같다. • 조밀판: λ_f≤1.0

$$\frac{F_{nc}}{F_{yc}} = 1.0 \tag{15a}$$

• 비조밀판: 1.0 < *λ*_f ≤ 1.992

$$\frac{F_{nc}}{F_{yc}} = 1 - 0.3 \left(\frac{\overline{\lambda_f} - 1.0}{1.992 - 1.0} \right)$$
(15b)

• 세장판: λ_f > 1.992

$$\frac{F_{nc}}{F_{yc}} = \frac{0.9Ek}{\lambda_f^2 \lambda_p^2 F_{yc}} = 2.77 \frac{1}{\lambda_f^2}$$
(15c)

먼저, β/β_{cr} < 1.4일 때 1 ≤ n ≤ 3 경우 모두 종국 변형 형상은 one half wave를 보였으며, Table 1–Table 3으로 부터 F_{u,FEA}/F_{nc} 비의 최소값은 n = 2 및 n = 3의 일부 조 밀판 또는 조밀에 가까운 비조밀판에서 0.99를 보인다. n이 증가할수록 F_{u,FEA}/F_{nc} 비가 조금 감소하는 경향을 보이는데, 추후 n ≥ 4에 대해 보완 검토가 필요하다고 판단된다. 단 이 값(0.99)은 인접 패널에 의한 '연속효 과'를 고려하지 않은 것이므로 안전측의 압축강도임을 감안할 필요가 있다. 그 외의 경우는 모두 1.0 이상의 값을 보이며, 비조밀 및 세장판 영역에서는 판의 세장비 가 증가할수록 안전측의 결과를 보인다. 따라서 β/β_{cr} < 1.4일 때 Wang *et al.*이 제안한 식 (4a)와 식 (4b)는 합 리적인 크기의 보강재를 결정하는데 적용 가능하다고 판단된다.

한편, $1 \le n \le 3$ 경우 모두 $\beta/\beta_{cr} = 1.4$ 에서 two half wave의 종국 변형형상을 보였다. $F_{u,FEA}/F_{nc}$ 비는 비조 밀판 영역에서 n = 1일 때 0.94–0.85, n = 2일 때 0.94– 0.92, n = 3일 때 0.96–0.93의 범위를 보였으며, 세장판 영역에서는 n = 2일 때 0.95, n = 3일 때 1.19를 보였다. 따라서 $\beta/\beta_{cr} \ge 1.4$ 일 때 설계기준의 압축강도에 미치지 못하는 결과를 보일 수 있고, 이러한 경향은 n이 작을 수록 두드러진다. Table 1과 Table 2에서 $\beta = 1.4\beta_{cr}$ 에 해당하는 횡방향 보강재 간격(a)은 판의 세장비에 따라 n = 1일 때 4,400 mm–4,500 mm, n = 2일 때 6,500 mm –7,300 mm이다. 이러한 간격은 실제 박스거더쿄에서 생길 수 있으므로 횡방향 보강재의 최대 간격에 대한 규정이 필요하다고 판단된다.

참고로 Table 1과 Table 2에 β/β_{cr} ≒ 1.4(* 마크 표시) 인 경우들에 대해 식 (1a)와 식 (1b)의 AASHTO 기준에 의한 k 값을 괄호 내에 제시하였다. 이로부터 식 (4a) 및 식 (4b)의 k_{fc} 가 AASHTO 기준의 k 값보다 같거나 작게 산출되었다. 따라서 AASHTO 기준의 k를 적용하는 것 에 비해 k_{fc} 의 적용으로 인해 압축강도를 크게 평가하지 는 않았다. 이로부터, 보강판에서 횡방향 보강재의 최 대 간격은 AASHTO LRFD 기준의 식 (1a) 및 식 (1b) 또는 Wang *et al*.의 식 (4a) 및 식 (4b)의 적용 시 $\beta/\beta_{cr} <$ 1.4로 제한할 필요가 있다. 현재 AASHTO LRFD 기준 에서는 식 (1a) 및 식 (1b)의 적용 시 횡방향 보강재의 최대 간격에 대한 언급은 없다.

5. 결론

본 연구에서는 압축력을 받는 보강판에서 T-형 보강 재의 제원을 합리적으로 결정하기 위해 Wang *et al.*^[3] 이 형상비를 고려하여 제안한 좌굴계수 식의 적용 시 AASHTO LRFD 기준의 압축강도가 타당하게 산정되 는지 여부를 평가하기 위한 연구를 수행하였다. 종방향 보강재는 1~3개까지 고려하였으며 주요 변수로 형상 비(β), 판의 폭-두께비 및 보강재의 휨강성을 고려하였 다. 압축강도의 평가는 재료 및 기하비선형해석에 의하 였으며, 본 연구의 주요 결론은 다음과 같다.

- (1) β < 1.4β_{cr}일 때 FE 해석에 의한 좌굴모드 및 비 선형해석에 의한 종국 변형은 one half wave를 보 였다. 해석에 의한 압축강도(F_{u,FEA})는 Wang *et al.*이 제안한 식 (4a)와 식 (4b)로부터 k_{fc}를 산정하 고 이로부터 AASHTO LRFD 기준의 한계세장 비 λ_p와 λ_r을 계산한 후 식 (10a)-식 (10c)로 산정 한 압축강도(F_{nc})를 만족 또는 상회하는 것으로 나타났다.
- (2) 보강재 개수(n) 1~3개 경우 모두 β ≥ 1.4β_{cr}일 때 좌굴모드 및 비선형해석의 종국 변형은 two half wave를 보였다. 이 때 비조밀판 및 세장판 영역 에서 AASHTO LRFD 기준의 압축강도에 미치 지 못하는 결과를 보였으며, 이러한 경향은 n이 작을수록 두드러졌다.
- (3) 한편 β = 1.4β_{cr}에 해당하는 횡방향 보강재 간격 은 보강재 개수가 2개 이하일 때 실제 박스거더 교에서 생길 수 있어 횡보강재의 최대 간격에 대

한 고려가 필요한 것으로 판단되었다. 이에 잠정 적으로 횡방향 보강재의 최대 간격은 AASHTO LRFD 기준의 식 (1a) 및 식 (1b) 또는 Wang *et al.* 의 식 (4a) 및 식 (4b) 적용 시 *β* < 1.4*β*_{cr}로 제한할 필요가 있다.

본 연구에서는 강재를 HSB460 강재로 한정하고 비 선형해석에 의한 해석적 연구를 수행하였는데, 향후 고 강도강과 더불어 실험적 연구에 의한 검증이 필요하다.

감사의 글

이 논문은 부산대학교 기본연구지원사업(2년)에 의 하여 연구되었음.

참고문헌(References)

- American Association of State Highway and Transportation Officials (2020) AASHTO LRFD Bridge Design Specifications (9th Ed.), USA.
- [2] American Association of State Highway and Transportation Officials (2002) *Standard Specifications for*

Highway Bridges (17th Ed.), USA.

- [3] Wang, L., Park, Y.M., Liu, Y., and Choi, B.H. (2021) Proposal of Buckling Coefficient Equation Considering Aspect Ratio of Compression Plates Stiffened with Tees, *Journal of Korean Society of Steel Construction*, KSSC, Vol.33, No.5, pp.275–283 (in Korean).
- [4] Ministry of Land, Infrastructure and Transport (2017) Design Standard of Steel Structural Members (Load and Resistance Factored Design) (KDS 14 31 10: 2018), Korea (in Korean).
- [5] Timoshenko, S.P., and Gere, J.M. (1961) Theory of Elastic Stability, McGraw-Hill, USA.
- [6] Choi, B.-H. (2002) Design Requirements for Longitudinal Stiffeners for Horizontally Curved Box Girders, Ph.D. Dissertation, Auburn University, USA.
- [7] Dassault Systèmes Simulia Corp. (2022) Abaqus Analysis User's Manual, DSS, USA.
- [8] Chacón, R., Serrat, M., and Real E. (2012) The Influence of Structural Imperfections on the Resistance of Plate Girders to Patch Loading, *Thin-Walled Structures*, Elsevier, Vol.53, pp.15–25.
- [9] European Committee for Standardization (2006) Eurocode 3: Design of Steel Structures, Part 1-5: Plated Structural Elements (EN 1993-1-5: 2006), Belgium.

핵심용어 : 보강판, 형상비, T-형 보강재, 좌굴계수, 압축강도

Ω 약: 종방향 보강재로 보강된 판에서 보강재의 제원을 합리적으로 결정하기 위해 Wang *et al.*은 형상비(β)를 고려한 좌굴계수 식(*k*_{fc})을 최근 제안하였다. 본 연구에서는 *k*_{fc} 식의 적용 시 AASHTO LRFD 교량설계기준의 압축강도가 합리적으로 산정되는지에 대한 해석적 연구를 수행하였다. 보강재 개수는 3개까지 고려하였으며, 주요 변수로서 형상비와 조밀, 비조밀 및 세장 판을 포함하도 록 판의 폭-두께비와 보강재의 휨강성 조합을 고려하였다. 비선형해석으로부터 압축강도를 평가한 결과 β < 1.4β_{cr}(β_{cr}: *k*_{fc}가 최소값 이 되는 한계세장비)일 때에는 one half sine-wave의 종국변형을 보이며 AASHTO 기준의 압축강도가 얻어졌다. 반면, β ≥ 1.4β_{cr}일 때에는 two half wave 형태의 종국변형을 보였으며 설계기준의 압축강도에 도달하지 못하였다. 따라서 횡방향 보강재의 최대 간격에 대한 규정이 필요할 것으로 판단되었다.