Journal of Korean Society of Steel Construction

Vol.34, No.4, pp.219-226, August, 2022

Check for updates ISSN(print) 1226-363X ISSN(online) 2287-4054 DOI https://doi.org/10.7781/kjoss.2022.34.4.219

모듈 간 접합부의 지진에 대한 취약도 함수 개발

이상섭^{1*} · 홍성엽²

¹공학박사, 연구위원, 한국건설기술연구원, ²박사수료, 프로, 삼성물산㈜ 건설부문

Development of Seismic Fragility Function for Inter-Module Connections

Lee, Sang Sup^{1*}, Hong, Sung Yub²

¹Ph.D. Senior researcher, Korea Institute of Civil Engineering and Building Technology, Goyang, 10223, Korea ²Ph.D. candidate, Pro, Samsung C&T Corporation Engineering & Construction Group, Seoul, 05288, Korea

Abstract - It is true that the performance evaluation is theoretically difficult because the behavior of the inter-module connection on lateral force depends on the diaphragm action and the stiffness of the beam-column connection. However, it is necessary to develop a fragility function for the performance-based seismic design of modular buildings. the fragility function should be able to calculate the probability of exceeding several damage levels at a specified demand level. In this study, 137 damage data from 46 test results of 11 previous research were classified into 4 damage states and the drift ratio was selected as the demand parameter. The damage state 1, 2, 3 and 4 were defined by the cosmetic(elastic deformation and peeling of paint), the slight(local buckling of beams and microcracks in welds), the moderate(beam failure and weld failure) and the complete(destruction of structural elements) structural damage, respectively. The fragility function, lognormal cumulative distribution function, of the inter-module connection was presented as the value of median and dispersion. Also, the fit of the lognormal distribution in the damage data was reviewed through the Lilliefors test and the Kolmogorov-Smirnov test.

Keywords - Inter-module connection, Fragility function, Damage state, Drift ratio, Goodness of fit test

1.서론

모듈러 건축물에서 모듈 간 접합은 건물 전체의 구조 안 전성을 보장하는 데 중요한 역할을 한다. 기둥과 보로 구성 되는 골조식 모듈은 일반적으로 바닥보와 천장보가 있으 며, 모듈 간 접합은 특별한 연결 장치를 기둥 또는 보에 설 치하여 볼트로 체결하는 방식이 채택되고 있다. 최근에는 스프링의 복원력을 이용, 모듈의 적층과 동시에 접합이 자 체적으로 이뤄질 수 있는 모듈 간 접합 장치도 개발되고 있 고, 천장보를 대신하여 브래킷을 이용한 볼트 접합 상세도 제안되고 있다. 모듈의 기둥과 보는 H형강, 각형강관, C형

Copyright © 2022 by Korean Society of Steel Construction *Corresponding author.

Tel. +82-31-910-0768 Fax. +82-31-910-0392 E-mail. lss0371@kict.re.kr 강 등 여러 형강이 사용될 수 있으며, 모듈 간 접합부는 부 재 형태, 기하학적 조건 및 접합 방식에 따라 다양한 상세를 가질 수 있다. 모듈 간 접합부에 대한 연구는 모듈러 건축 에 대한 관심의 증가로 근래에 보고되는 사례가 늘고 있다. 지진 등의 횡력에 대한 모듈 간 접합부 거동은 격막 작용 의 여부와 내부 접합부인 보-기둥 접합의 강성에 따라 달라 질 수 있기 때문에 모듈 간 접합부의 성능 평가가 이론적으 로 어려운 것이 사실이다. Lacey et al.[1]은 하중 방향에 따 른 모듈 간 접합의 병진 강성이 모듈러 건축물의 전체 응답 에 영향을 줄 수 있음을 복잡한 수치 해석을 통해 규명하였 지만 대다수 연구는 실험을 통해 모듈 간 접합의 내진 성능 을 평가하고 있다. 모듈 간 접합부의 거동이 큰 영향을 미 치는 내진설계는 실험을 통해 얻은 데이터를 수치 해석 모 델에 반영하여 사양기반설계를 따르거나. 실험체 손상 평 가를 통해 개발된 취약도 함수(fragility function)를 기반으 로 지진하중에 의한 손상이 지정된 수준의 성능을 넘지 않 도록 하는 성능기반설계를 따를 수 있을 것이다. 따라서 모 듈러 건축물의 성능기반 내진설계를 위해 구조 부재의 손

Note.-Discussion open until February 28, 2023. This manuscript for this paper was submitted for review and possible publication on June 28, 2022; revised on July 11, 2022; approved on July 12, 2022.

상정도를 예측할 수 있는 취약도 함수가 필요하다.

철골구조에 대한 취약도 함수는 중심가새골조^[2], 노스리 지 지진 이전의 용접 접합부^[3], 보 플랜지 축소 철골모멘트 접합부^[4] 등의 골조 및 접합부 외에 비구조부재까지 제안 되어 왔다. 하지만 모듈러 구조에 대한 취약도 함수는 실험 자료 부족 등을 포함한 여러 이유로 보고되어 있지 않다.

건축물의 내진성능평가 방법론을 서술한 FEMA P-58 (2018)^[5]에는 구조부재, 비구조부재, 설비시설 및 가구 등의 지진 취약도를 기반으로 인명피해 및 재산피해를 정량적 으로 계산할 수 있는 성능평가 방법론이 제시되었다. 700개 가 넘는 건축물의 구성요소(component)에 대해 지진 취약 도가 개발되어 있어 해당 구성요소를 적용한 건축물의 경 우 지진 취약도를 이 기준으로 평가할 수 있다. 이 논문에서 는 국내외에서 보고된 모듈 간 접합부 실험에 대한 문헌을 수집하여, 요구량 모수(demand parameter)로 층간변위비를 기반으로 한 손상상태(damage state, DS)를 분류하여, 손상 정도에 따른 모듈 간 접합부의 취약도 함수를 통계 분석으 로 산정하고 그 타당성을 평가하고자 한다.

2. 모듈 간 접합부 실험 자료

2.1 실험 자료 수집

모듈러 건축물의 구조 성능은 모듈 자체의 역학적 성능 과 모듈 간 변형에 달려 있다. 모듈 자체의 성능은 일반적 인 강구조설계기준을 참고하여 확보될 수 있지만, 모듈 간 연결은 명확하게 규정된 기준이 없어 모듈러 건축물의 일 체성 확보에 중요한 부분으로 언급되고 있다. 모듈 간 접합 상세는 최근 빠르고 정밀한 연결을 위해 새로운 방식이 개 발되고 있으며, 이렇게 개발된 접합 방식은 실험과 해석을 통해 거동 특성이 분석되어 왔다.

모듈 간 접합부에 대한 취약도 함수를 개발하기 위한 실 험 자료는 경량형강이 아닌 일반 형강을 부재로 사용하고, 볼트, 용접 및 기계적 장치를 사용하여 접합한 경우로 국한 하였으며, 거동 특성이 달라질 수 있는 강봉 또는 강연선 등 을 사용한 경우는 배제하였다. 수집된 자료는 보고서와 논 문을 중심으로 총 11건이었으며, 국내 자료는 보고서 1건 과 논문 3건이었으며, 국외 자료는 논문 7건이었다. 이 자 료에서 확인된 모듈 간 접합부 실험은 총 46개이었다. 실험 체 형상은 십자형이 25개, 외팔보형 20개, 골조가 1개였고, 가력 방법은 단조가 9개이고 나머지는 모두 반복이었다. 여기서는 모듈 간 접합부 실험에 대해 간략히 요약하므로 상세한 정보는 원본을 참조해야 한다.

Jung et al.^[6]은 3개의 모듈 간 외팔보형 접합부 실험을 계 획하여 비교 실험체는 각형강관 기둥(□-250×150×12)과 C 형강 보(바닥보 C-250×150×9, 천장보 C-250×150×6)로 제 작하고, 너트캡을 용접한 특수 블록이 사용된 2개 실험체는 각형강관 보(바닥보 □-250×150×9, 천장보 □-250×150×6) 로 제작하였다. 재료의 항복강도는 377 MPa - 425 MPa, 인 장강도는 547 MPa - 575 MPa에 해당되었다.

Oh et al.^[7]은 렌치 볼트(wrench bolt)를 특수 제작된 상부 블록에 삽입하고 하부 블록 안에서 너트로 체결하는 방식 을 개발하였고, SRT355 각형강관 기둥(□-250×150×12)과 각형강관 보(바닥보 □-250×150×9, 천장보 □-150×100×6) 를 사용해 제작한 3개의 외팔보형 실험체와 2개의 십자형 실험체를 실험하였다.

Jang et al.^[8]은 천장보 대신 H형 브래킷 및 ㄱ형 브래킷 을 사용하여 볼트 접합하는 방식으로 H형 브래킷(SHN490, H-200×200×8×14)이 적용된 실험체를 SHN490 H형강 기 둥(H-250×250×9×14)과 H형강 보(H-294×200×8×12)로 제 작하였고, ㄱ형 브래킷(SS400, BL-200×150×15)이 사용된 실험체를 SHN490 H형강 기둥(H-250×250×9×14)과 SHN 400 H형강 보(H-294×200×8×12)로 제작하여 2개의 외팔보 형과 4개의 십자형 실험을 실시하였다.

KICT(한국건설기술연구원, Korea Institute of Civil Engineering Building Technology)^[9]의 경우 8개의 모듈을 연 결하기 위해 주물로 제작된 8면체 노드(node)가 중심에 결 합된 십자형 연결강판(6 mm와 12 mm)을 이용한 볼트 접 합 방식으로 SS400 강판을 절곡한 각형강관 기둥(□-125× 125×6)과 C형강 보(C-200×75×6)를 포함한 7개의 십자형 실험을 실시하였다.

Zhai *et al.*^[10]은 커버 플레이트를 바닥보와 천장보 측면 에 덧대어 볼트로 체결하는 방식으로 중국의 강종인 Q345B 각형강관 기둥(□-150×150×10)과 C형강 보(C-200×70×8) 가 사용된 5개의 외팔보형 실험을 수행하였다.

Chen *et al.*^[11]은 코너 피팅, 장부 장치, 잠금 탭, 스프링 및 가셋 플레이트로 구성된 자동 접합 방식으로 중국 강종 인 Q345B의 각형강관 기둥(□-2000×200×8)과 H형강 보 (바닥보 H-194×150×6×9, 천장보 H-150×150×7×10) 또는 각형 보(바닥보 □-200×150×6, 천장보 □-200×150×7)로 제 작된 십자형 실험체 6개의 실험을 보고하였다.

Liu et al.^[12]은 콘테이너의 모서리 블록과 유사한 방식이

며, Q345B의 각형강관 기둥(□-200×200×8)과 H형강 보 (바닥보 H-194×150×6×9, 천장보 H-150×150×7×10)가 사 용된 2층 골조 실험을 실시하였다.

Ma et al.^[13]은 강재 박스를 상하 모듈 기둥 내부에 설치 하고 외부에 강판을 덧댄 다음 수평방향으로 볼트를 관통 시켜 연결하는 접합 방식으로 Q345B의 각형강관 기둥(□-150×150×8)과 C형강 보(바닥보 C-250×140×10, 천장보 C-200×140×10 or C-250×140×10)가 사용된 3개의 외팔형 실 험체를 시험하였다.

Cho et al.^[14]은 모듈 외부에 강판을 덧대고 일방향 볼트 와 고장력 볼트로 체결하는 방식으로 SM490에 해당하는 각형강관 기둥(□-200×100×6)과 C형강 보(바닥보 C-250× 100×4, 천장보 C-150×100×4) 및 SS400의 니(knee) 가새(L-50×50×4)로 보강된 2개의 십자형 실험을 수행하였다.

Deng et al.^[15]은 십자형 연결철물을 삽입하고 볼트 체결 하는 방식으로 Q345B의 각형강관 기둥(□-200×200×8)과 각형강관 보(바닥보 □-200×200×8, 천장보 □-200×200×6) 를 사용하여 십자형 접합부 실험체 4개를 시험하였다.

끝으로 Chen et al.^[16]은 플러그-인 장치를 이용해 상하 모듈의 기둥 위치를 정렬하고, 보 사이에 설치된 연결강판 을 관통하는 롱스테이(long stay) 볼트로 체결하는 방식으 로 Q345B의 각형강관 기둥(□-150×150×8)과 각형강관 보 (바닥보 □-150×150×8 or □-150×250×8, 천장보 □-150× 150×8)을 사용하여 6개의 십자형 실험을 보고하였다.

2.2 요구량 모수

실험결과를 기반으로 모듈 간 접합부의 취약도 함수를 유도하기 위해 하중 또는 변위를 요구량 모수로 사용할 수 있을 것이다. 즉, 손상에 대한 변수로서 대다수의 실험 논

Table 1. Structural performance levels and damage^[17]

문에서 그래프를 통해 확인할 수 있다. 하지만, 하중과 변 위는 사용된 부재의 강종과 크기에 따라 달라질 수 있어 손 상에 대한 변수로 일반화하기는 곤란하다.

모듈 간 접합부의 손상에 대해 일반화된 요구량 모수로 소산에너지가 적절할 수 있다. 그러나 많은 자료에서 모듈 간 접합부의 손상을 소산에너지와 연관하여 평가하고 있 지 않으며, 문헌에 나타난 이력곡선에서 소산에너지를 계 산하는 것은 신뢰성이 떨어질 수 있다. 따라서 반복가력 실 험에서 가력스케줄의 기준이 되는 층간변위비가 손상을 평 가하는데 가장 적절한 요구량 모수라고 판단되며, 변위제 어 실험의 경우에도 쉽게 환산할 수 있다는 장점이 있다. 이에 따라 이 연구에서도 모듈 간 접합부의 취약도 함수의 요구량 모수로 층간변위비를 채택하였으며, 항복변위를 기준으로 변위제어된 실험결과는 실험체의 기하학적 조건 을 반영하여 층간변위비를 계산하였다.

3. 모듈 간 접합부의 손상상태 정의

3.1 성능 수준과 손상

모듈 간 접합부의 손상상태를 분류하기 위해 Table 1에 정리한 FEMA 356(2000)^[17]이 철골 모멘트 골조에 대해 정 의한 구조성능 수준을 우선 검토하였다. 여기서는 성능 수 준을 즉시거주(IO), 인명안전(LS), 붕괴방지(CP)로 구분하 였고, 이 성능 수준을 구분하는 층간변위비를 0.7%, 2.5%, 5%로 정하고 있다. 즉시거주에 해당하는 대표적인 손상 정도는 미소한 국부좌굴 및 영구변형이고, 인명안전에 해 당하는 손상은 소성힌지 형성, 접합부의 심각한 변형 및 부 재의 국부적 파단이며, 붕괴방지에 해당하는 것은 패널 존 의 심각한 변형 및 다수의 모멘트 접합부의 파괴 등이다.

Damage type	Structural performance levels				
	IO (S-1)	LS (S-3)	CP (S-5)		
Primary	Minor local yielding at a few places. No fractures. Minor buckling or observable permanent distortion of members.	Hinges form. Local buckling of some beam elements. Severe joint distortion; isolated moment connection fractures, but shear connections remain intact. A few elements may experience partial fracture.	Extensive distortion of beams and column panels. Many fractures at moment connections, but shear connections remain intact.		
Secondary	Same as primary.	Extensive distortion of beams and column panels. Many fractures at moment connections, but shear connections remain intact.	Same as primary.		
Drift	0.7 % transient; negligible permanent	2.5 % transient;1 % permanent	5 % transient or permanent		

또한 FEMA 351(2000)^[18]의 부록 B에는 노스리지 지진 이전과 이후의 철골 모멘트 접합부에 대한 손상상태를 정 의하고 있다. 이 연구에서는 노스리지 지진 이후의 접합부 에 대한 손상상태를 모듈 간 접합부의 손상상태 정의에 참 고하기 위해 Table 2에 정리하였다. 구조적 손상상태는 연 속적인 함수로 경계를 구분지을 수 없지만 사용자가 이해 할 수 있도록 경미, 중간, 광범위 및 완전으로 분류하였고, 관련된 철골 모멘트 접합부의 손상을 설명하고 있다.

	Table 2. Descri	ptions	of structural	damage	states ^[18]
--	-----------------	--------	---------------	--------	------------------------

Damage state	Buildings with post-Northridge connections			
Slight structural damage	No permanent interstory drift. Minor deformations in some connection elements. No fractures in connections.			
Moderate structural damage	Permanent interstory drift as large as 0.5 %. Perhaps as many as 25 % of the connections on any floor level have experienced fracture.			
Extensive structural damage	Many steel members have exceeded their yield capacity, resulting in significant permanent lateral deformation of the structure. Some structural members or connections may have major permanent member rotations at connections, buckled flanges and failed connections. Some connections may have lost ability to support gravity load, resulting in partial local collapse.			
Complete structural damage	A significant portion of the structural elements have exceeded their ultimate capacities and/or many critical structural elements or connections have failed resulting in dangerous permanent lateral displacement, partial collapse or collapse of the building. Approximately 15 % (of the total square footage) of all WSMF buildings with complete damage are expected to have collapsed.			

이를 참고하여 모듈 간 접합부의 실험결과에 대한 구조 적 손상상태를 다음의 4가지로 구분하였고, 각 손상상태에 따른 보수방법(method of repair, MoR)을 서술하였다.

- 손상상태 DS1: 미관 손상 보수방법 MoR1: 미관 보수
- 손상상태 DS2: 약한 손상 보수방법 MoR2: 좌굴 부위의 가열 교정
- 손상상태 DS3: 중간 손상 보수방법 MoR3: 구조 요소의 부분 교체
- 손상상태 DS4: 심각 손상 보수방법 MoR4: 구조 요소의 대부분 교체

3.2 실험체 손상지표

단조 및 반복가력으로 수행된 46개의 실험에 대해 각 논 문에 서술되어 있는 손상상태에 대한 손상지표는 매우 다 양하여 층간변위비에 따른 137개의 손상 데이터를 FEMA 356과 FEMA 351을 참고하여 Table 3에 정리하였다.

손상상태 1로 분류된 대표적인 손상지표는 마찰음, 탄성 변형 및 페인트 박리로 구조적인 손상이 아니기 때문에 수 집된 논문에 상세히 언급되지 않아 17개의 데이터만 확인 되었다. 손상상태 2로 분류된 손상지표는 보(바닥, 천장) 항복, 보 국부좌굴 및 용접부 미세균열 등으로 대표적으로 보의 국부좌굴 손상을 Fig. 1(a)에 나타냈으며, 40개의 데 이터가 여기에 해당되었다. 손상상태 3으로 분류된 실험체 의 손상지표는 Fig. 1(b)와 같은 용접부 파단, 소성힌지 형 성 시작, 보강재 파단, 보의 횡좌굴, 패널 존의 국부좌굴 등 으로 35개의 데이터가 확인되었다.

손상상태 4로 구분된 손상지표는 심한 좌굴, 용접부 완 파, 부재 완파, 볼트 파괴, 층간 이격, 층간 미끄러짐이 있었 고, 대표적으로 Fig. 1(c)에 층간 미끄러짐 손상을 나타냈으 며, 45개의 데이터가 수집되었다.

(a) Local bucking of beam^[12]

(b) Weld fracture^[15]

(c) Slip between floor beam and ceiling beam^[8]Fig. 1. Damage of inter-module connection

Ref.	Specimen	Shape	Loading	Number of damage data at DS(MoR)			
				1	2	3	4
	CC	Cantilever	Cyclic	1	Numblamage at DS(I at DS(I)) at DS(I at DS(I)) at DS(I at DS(I)) at DS(I at DS(I)) at DS(I at DS(I)) at DS(I at DS(I)) at DS(I) at DS(I	0	0
[6]	CS	Cantilever	Cyclic	0	1	0	0
	CS-B	Cantilever	Cyclic	0	1	0	0
	ES_2	Cantilever	Cyclic	1	1	1	1
	ID_4	Cantilever	Cyclic	1	1	1	0
[7]	ID_8	Cantilever	Cyclic	0	0	0	1
Ref. [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]	IS_4	Cruciform	Cyclic	1	0	0	1
	IS_8	Cruciform	Cyclic	0	1	1	0
	E-S-H	Cantilever	Cyclic	1	amage DS(N 2 1 1 1 1 1 1 1 1 0 0 1 <td>2</td> <td>0</td>	2	0
	E-W-H	Cantilever	Cyclic	1	1	1	2
гот	I-S-H	Cruciform	Cyclic	1	1	2	1
٢٥١	I-W-H	Cruciform	Cyclic	0	1	1	1
	I-S-L	Cruciform	Cyclic	2	1	1	0
	I-W-L	Cruciform	Cyclic	1	1	nber cage da age da S(Mo) 0 0 0 0 0 1 0 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1	1
	MC-P12-N	Cruciform	Cyclic	0	2	2	0
	MC-P6-N	Cruciform	Cyclic	1	1	2	0
	MC-P12-C50	Cruciform	Cyclic	1	0	1	0
[9]	MC-P12-C100	Cruciform	Cyclic	1	2	1	0
	MC-PH12-N	Cruciform	Cyclic	0	1	1	0
	MC-PV12-F	Cruciform	Cyclic	1	1	1	0
	MC-P-12-F	Cruciform	Cyclic	0	1	ber of ge data (MoR) 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3	0
	MS1	Cantilever	Monotonic	0	1	0	4
	MS2	Cantilever	Monotonic	0	1	0	4
[10]	QS1	Cantilever	Cyclic	0	0	1	4
~]	QS2	Cantilever	Cyclic	0	0	0	3
	QS3	Cantilever	Cyclic	0	0	0	4
	T-1	Cantilever	Cyclic	0	2	0	0
[11]	T-2	Cantilever	Cyclic	1	0	1	1
	T-3	Cantilever	Cyclic	1	0	1	1
	T-4	Cantilever	Cyclic	1	1	0	1
[12]	-	Frame	Cyclic	0	1	0	1
	T1	Cantilever	Monotonic	0	1	0	1
[13]	T2	Cantilever	Monotonic	0	1	0	1
	Т3	Cantilever	Monotonic	0	1	0	0
[14]	IC_OB_F	Cruciform	Cyclic	0	2	1	0
[17]	IC_OB_B	Cruciform	Cyclic	0	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
	J1	Cruciform	Monotonic	0	0	2	0
[15]	J2	Cruciform	Monotonic	0	1	1	0
	J3	Cruciform	Cyclic	0	1	1	0
	J4	Cruciform	Cyclic	0	0	SC MoF 3 0 0 0 0 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
	SC1	Cruciform	Monotonic	0	0	1	1
	SC2	Cruciform	Monotonic	0	0	0	3
[16]	QSC1	Cruciform	Cyclic	0	2	1	2
[16]	QSC2	Cruciform	Cyclic	0	1	0	3
	QSC3	Cruciform	Cyclic	0	1	3	0
	QSC4	Cruciform	Cyclic	0	0	1	0
	Sum	-	-	17	40	35	45

Table 3. Summary of data for fragility functions

4. 모듈 간 접합부의 취약도 분석

4.1 취약도 함수

취약도 함수는 요구량에 대한 로그정규분포(lognormal distribution)의 누적분포함수(cumulative distribution function, CFD)의 형태로 식 (1)과 같은 수학적 함수로 표현된다.

$$F_i(D) = \boldsymbol{\Phi}\left[\frac{\ln(D/\theta_i)}{\beta_i}\right] \tag{1}$$

여기서, F_i(D)는 손상상태 i에서 구성요소가 손상될 조건 부 확률이며, i는 손상상태를 의미한다. 또한 Φ는 표준정규 누적분포함수이고, D는 요구량이다. θ_i는 손상상태 i에서 요구량의 중앙값이며, β_i는 손상상태 i에서 요구량의 분산 이다. 따라서 손상상태의 취약도 함수는 해당 손상상태가 시작될 가능성이 50 %인 요구량을 의미하는 θ와 해당 손 상상태가 요구량의 값에서 시작될 불확실성을 나타내는 β 로 정의된다는 것을 의미한다.

실험결과에서 얻은 손상 데이터의 중앙값(θ)은 식 (2)으 로 계산될 수 있다. 식 (2)에 사용된 *M*은 실험체의 개수이 고, *d*는 실험체의 요구량을 뜻한다.

$$\theta = e^{\left(\frac{1}{M}\sum_{i=1}^{M}\ln d_{i}\right)}$$
(2)

실험의 불확실성은 실험체의 품질 및 하중 조건 등 여러 요인에서 비롯되지만, 크게 두 가지 요인으로 구분할 수 있 다. 첫째는 실험에서 채택한 변수에 의해 결정되는 무작위 변동성(β,)이고, 둘째는 실험실 조건이 실제와 다르고 실험 체 크기가 실규모와 다르다는 불확실성(β_u)이다. 따라서 실 험에서 요구량의 분산(β)은 식 (3)으로 평가되어야 한다. 불 확실성(β_u)는 FEMA P-58-1^[5]의 부록 H에 서술한 제한적 인 실험조건에 해당될 경우 0.25를 적용하고, 그 이외의 경 우는 0.10을 적용하도록 제시되어 있다. 이 연구에서는 제 한적인 실험조건에 해당되지 않아 0.10을 적용하였다.

$$\beta = \sqrt{\beta_r^2 + \beta_u^2} \tag{3}$$

$$B_r = \sqrt{\frac{1}{M-1} \sum_{i=1}^{M} \left[\ln\left(\frac{d_i}{\theta}\right) \right]^2}$$
(4a)

$$B_u = 0.10 \text{ (in this paper)} \tag{4b}$$

4.2 취약도 분석

모듈러 접합부의 손상 데이터를 통계 분석하여 각 손상 상태에 대한 중앙값(θ)과 분산(β)을 Table 4에 정리하였고, Fig. 2에 실험적 취약도와 이론적 취약도 함수를 비교하였 다. 손상상태의 50 % 확률을 갖는 요구량인 중앙값은 손상 상태가 악화될수록 증가하고 있으며, 분산값이 클수록 곡 선의 형상이 완만하게 형성되는 것을 확인할 수 있다. 순차 적으로 손상이 발생할 경우 구성요소가 손상상태 *i*의 손상 을 받은 후 *i*+1의 손상까지 받지 않을 확률은 식 (5)와 같다.

$$P[i/D] = F_i(D) - F_{i+1}(D)$$
(5)

Table 4. Lognormal distribution parameters and Lilliefors test

DS	Р	aramete	rs	Lill	Lilliefors test (K-S test)			
	θ	β	β_r	D _{crit}	D	H_o	р	
1	1.225	0.341	0.326	0.207	0.195	Accept	0.003	
2	2.657	0.436	0.424	0.139	0.134	Accept	0.001	
3	4.106	0.258	0.238	0.148	0.140	Accept	0.001	
4	5.666	0.394	0.381	0.131	0.122	Accept	0.037	

중간모멘트골조 성능의 지표가 되는 요구량인 2% 층간 변위비에서 살펴보면 손상상태 1이 시작될 확률은 약 93% 이고, 손상상태 1이 계속해서 유지될 확률은 약 66%이고, 손상상태 2가 발생되어 유지될 확률은 약 25%이며, 심각 손상에 해당하는 손상상태 4의 발생 확률은 0.8%에 불과 했다. 특수모멘트골조 성능의 요구량 지표인 4% 층간변위 비에서 검토하면 손상상태 1의 발생 확률은 거의 100%이 고, 손상상태 1, 2, 3, 4가 유지될 확률은 각각 약 17%, 33%, 31%, 19%로 평가되고 있다.

Fig. 2. Fragility function for inter-module connection

4.3 적합도 평가

모듈 간 접합부의 취약도 분석에 사용된 각 손상상태 데 이터가 로그 정규분포를 이루고 있는가를 검정해 보고자 한다. FEMA P-58-1^[5]의 부록 H를 참조하여 Lilliefors 검정 을 채택하였다. Lilliefors 검정은 표본 데이터와 분포함수가 얼마나 잘 맞는지를 평가하기 위한 방법으로 Kolmogorov-Smirnov(K-S) 검정을 변형한 것으로 먼저 식(6)과 식(7)을 사용하여 D값을 계산한다.

$$D = \max_{x} |F_i(d) - S_M(d)|$$
(6)

$$S_M(d) = \frac{1}{M} \sum_{i=1}^M H(d_i - d)$$
(7)

여기서, *S_M(d*)는 표본의 누적분포함수를 나타내며, *H*는 *d_i* - *d*가 양(+)이면 1.0이고, 0이면 0.5를 적용하고, 음(-) 이면 0을 적용한다.

이런 과정을 통해 계산된 D값이 유의수준에 따라 제시 된 D_{crit}와 비교한 결과 작을 경우 귀무가설(H_o)은 채택(accept)되고, 클 경우엔 기각(reject)된다. 이 연구에서는 95% 의 유의수준을 채택하였고, 이에 따른 D_{crit}는 식 (8)과 같이 주어진다.

$$D_{crit} = 0.895/(M^{0.5} - 0.01 + 0.85M^{-0.5})$$
(8)

모듈 간 접합부의 각 손상상태에 대한 Lilliefors 검정결 과는 Table 4에 정리하였다. 4가지 손상상태에서 모두 D값 이 D_{crit} 값보다 작아 귀무가설이 채택되었다.

하지만, 통계프로그램의 K-S 검정을 통해 얻은 양측 근 사 유의확률(p)은 0.05보다 모두 작은 것으로 나타나 사용 한 데이터가 정규성을 갖지 못하는 것으로 평가되었다. 이 와 같은 문제는 수집된 논문에서 실험이 주로 특정한 가력 스케줄에 따라 반복가력되었고, 이 때 손상은 가력 단계마 다 3회 사이클이 완료된 후 관찰되어 기록되었기 때문에 손상이 발생한 층간변위비가 모두 동일한 값을 가지는 것 에서 비롯된 것으로 판단된다.

이에 따라 각 손상상태에 대해 95 % 유의수준에서 K-S 검정을 다시 수행하였고, 그 결과를 Fig. 3에 파선으로 나타 냈다. 모든 손상상태에서 K-S 검정은 통과된 것으로 나타 나 손상 데이터를 로그 정규분포를 따르는 것으로 볼 수 있 으며, 이를 통해 분석된 취약도 함수 또한 유효함을 확인할 수 있다.

5. 결론

모듈 간 접합부의 지진에 대한 취약도를 평가하기 위해 수집한 논문 등에 보고된 46개의 실험결과에서 얻은 총 137개의 손상 데이터의 통계적 분석을 통해 다음과 같은 결론을 얻었다.

- (1) 모듈 간 접합부의 손상상태는 4가지로 손상상태 1 (DS1)은 미관 손상: 탄성변형 및 페인트 박리, 손상 상태 2(DS2)는 약한 손상: 보 국부좌굴 및 용접부 미세 균열, 손상상태 3(DS3)은 중간 손상: 보 파단 및 용접부 파단, 손상상태 4(DS4)는 심각 손상: 부 재 완파 및 용접부 완파로 구분하였다.
- (2) 모듈 간 접합부의 취약도 함수는 로그정규분포 누 적분포함수로서 중앙값(θ)은 손상 수준에 따라 비 례하여 1.225, 2.657, 4.106, 5.666으로 나타났고, 분 산(β)은 0.341, 0.436, 0.258, 0.394로 평가되었다.
- (3) 모듈 간 접합부는 층간변위비 2 %에서 손상상태 1
 이 발생하여 유지될 확률은 약 66 %이고, 층간변위
 비 4 %에서 손상상태 3이 발생하여 유지될 확률도
 약 31 %로 나타났다.
- (4) 모듈 간 접합부의 취약도 함수 개발에 사용된 손상 상태 데이터는 Lilliefors 검정 그리고 Kolmogorov-Smirnov 검정을 통해 로그정규분포를 이루고 있는

것으로 평가되었다.

(5) 모듈 간 접합부의 취약도 함수의 정밀도를 높이기 위해서는 가력 과정에서 실시간 층간변위비에 따라 손상이 관찰되어 보고될 수 있는 실험방법이 정립 되어야 한다.

감사의 글

이 연구는 국토교통과학기술진흥원(KAIA) 및 한국건 설기술연구원(KICT)의 연구비 지원에 의한 결과의 일부 임(과제번호 21RERP-B082884-08[KAIA], 20150203-001 [KICT]).

참고문헌(References)

- [1] Lacey, A.W., Chen, W., Hao, H., and Bi, K. (2020) Effect of Inter-Module Connection Stiffness on Structural Response of a Modular Steel Building Subjected to Wind and Earthquake Load, *Engineering Structures*, Elsevier, Vol.213, 110628.
- [2] Lignos, D.G., and Karamanci, E. (2013) Drift-Based and Dual-Parameter Fragility Curves for Concentrically Braced Frames in Seismic Regions, *Journal of Constructional Steel Research*, Elsevier, Vol.90, pp.

209-220.

- [3] Ramirez, C.M., Lignos, D.G., Miranda, E., and Kolios, D. (2012) Fragility Functions for Pre-Northridge Welded Steel Moment-Resisting Beamto-Column Connections, *Engineering Structures*, Elsevier, Vol.45, pp.574-584.
- [4] Lignos, D.G., Kolios, D., and Miranda, E. (2010) Fragility Assessment of Reduced Beam Section Moment Connections, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.136, No.9, pp.1140-1150.
- [5] Applied Technology Council (2018) Seismic Performance Assessment of Buildings, FEMA P-58, Federal Emergency Management Agency, USA.
- [6] Jung, S.-M., Lee, J.-S., Lee, S.-H., Kim, H.-J., Lee, K.-M., and Shin, K.-J. (2022) Structural Performance Evaluation of Modular System Connections Using Special Blocks, *Journal of Korean Society of Steel Construction*, KSSC, Vol.34, No.1, pp.45-53 (in Korean).
- [7] Oh, K., Kim, S.-H., Shin, K.-J., Yoon, B.-I., and Lee, K. (2020) Structural Performance Evaluation of Modular Connection Using Specially Fabricated Blocks, *Journal of Korean Society of Steel Construction*, KSSC, Vol.32, No.4, pp.257-267 (in Korean).
- [8] Jang, D., Oh, K., Kang, C., and Lee, K. (2019) Seismic Performance Evaluation of H-Shape Beam-to-Column Connection in Modular System, *Journal of Korean Society of Steel Construction*, KSSC, Vol.31, No.5, pp.339-347 (in Korean).
- [9] Korea Institute of Civil Engineering Building Technology (2015) Development of Structural Technology for One Day Housing with Unit Steel Frame, KICT 2015-152, KICT, Korea, pp.108-139 (in Korean).
- [10] Zhai, S.-Y., Lyu, Y.-F., Cao, K., Li, G.-Q., Wang, W.-Y., and Chen, C. (2022) Experimental Study on Bolted-Cover Plate Corner Connections for Column-Supported Modular Steel Buildings, *Journal of Con-*

structional Steel Research, Elsevier, Vol.189, 107600.

- [11] Chen, Z., Wang, J., Liu, J., and Khan, K. (2021) Seismic Behavior and Moment Transfer Capacity of an Innovative Self-Locking Inter-Module Connection for Modular Steel Building, *Engineering Structures*, Elsevier, Vol.245, 112978.
- [12] Liu, J., Chen, Z., Liu, Y., Bai, Y., and Zhong, X. (2021) Full-Scale Corner-Supported Modular Steel Structures with Vertical Inter-Module Connections Under Cyclic Loading, *Journal of Building Engineering*, Elsevier, Vol.44, pp1-16.
- [13] Ma, R., Xia, J., Chang, H., Xu, B., and Zhang, L. (2021) Experimental and Numerical Investigation of Mechanical Properties on Novel Modular Connections with Super-Imposed Beams, *Engineering Structures*, Elsevier, Vol.232, 111858.
- [14] Cho, B.-H., Lee, J.-S., Kim, H., and Kim, D.-J. (2019) Structural Performance of a New Blind-Bolted Frame Modular Beam-Column Connection Under Lateral Loading, *Applied Sciences*, MDPI, Vol.9, No. 9, 1929.
- [15] Deng, E.-F., Zong, L., Ding, Y., and Luo, Y.-B. (2018) Seismic Behavior and Design of Cruciform Bolted Module-to-Module Connection with Various Reinforcing Details, *Thin-Walled Structures*, Elsevier, Vol.133, pp.106-119.
- [16] Chen, Z., Liu, J., and Yu, Y. (2017) Experimental Study on Interior Connections in Modular Steel Buildings, *Engineering Structures*, Elsevier, Vol.147, pp.625-638.
- [17] American Society of Civil Engineers (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, Federal Emergency Management Agency, USA, pp.1-14.
- [18] SAC Joint Venture (2000) Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings, FEMA 351, Federal Emergency Management Agency, USA, pp.B-3-B-4.

핵심용어: 모듈 간 접합부, 취약도 함수, 손상상태, 층간변위비, 적합도 검정

요 약: 횡력에 대한 모듈 간 접합부 거동은 격막 작용과 보-기둥 접합의 강성에 따라 달라지기 때문에 이론적으로 성능 평가가 어려 운 것이 사실이다. 그러나 모듈러 건축물의 성능기반 내진설계를 위해 특정 요구량 수준에서 여러 손상수준을 넘어설 확률을 계산할 수 있는 취약도 함수의 개발이 필요하다. 이 연구에서는 국내외에서 수집된 11건의 논문과 보고서에서 얻은 46개 실험으로부터 137개 의 손상 데이터를 4가지 손상상태로 구분하였고, 층간변위비를 요구량 모수로 선정하였다. 손상상태 1은 미관 손상: 탄성변형 및 페인 트 박리, 손상상태 2는 약한 손상: 보 국부좌굴 및 용접부 미세 균열, 손상상태 3은 중간 손상: 보 파단 및 용접부 파단, 손상상태 4는 심각 손상: 구조 요소의 완파로 구분되었다. 모듈 간 접합부의 취약도 함수는 로그정규분포 누적분포함수로서 중앙값과 분산을 제시하였고, Lilliefors 검정과 Kolmogorov-Smirnov 검정을 통해 손상 데이터의 로그정규분포의 적합도를 검토하였다.