Journal of Korean Society of Steel Construction

Vol.34, No.2, pp.77-88, April, 2022

Check for updates
 ISSN(print) 1226-363X ISSN(online) 2287-4054

DOI https://doi.org/10.7781/kjoss.2022.34.2.077

직선 텐던에 의하여 외부 긴장된 강재보의 면내·면외 좌굴에 대한 유한요소해석

김문영¹·아가 인티자르 메디²·김성보^{3*} ¹교수, 성균관대학교 건설환경공학부, ²박사과정, 성균관대학교, ³교수, 충북대학교, 토목공학부

FE Analysis on In-Plane and Out-of-Plane Buckling of Steel Beams with Externally Prestressed Rectilinear Tendons

Kim, Moon Young¹, Mehdi, Agha Intizar², Kim, Sung Bo^{3*}

¹Professor, School of Civil and Architectural Engineering, Sungkyunkwan University, Suwon, 16419, Korea ²Graduate Student (Ph.D. Course), School of Civil and Architectural Engineering, Sungkyunkwan University, Suwon, 16419, Korea ³Professor, School of Civil Engineering, Chungbuk National University, Cheongju, 28644, Korea

Abstract - In this paper, a FEM is newly presented for flexural and lateral-torsional buckling (LTB) analysis of an externally pre-stressed (PS) steel beam having multiple deviators. Firstly, total potential energies of a PS beam are presented depending on the number of deviators. After that, a FE formulation is developed based on the proposed total potential energy for three load cases having discrete un-bonded and bonded deviators. FE solutions for in-plain and out-of-plane buckling analysis of simple and cantilever PS H-beams are presented according to increase of deviators. Finally, it is demonstrated that the FE solution by this study is very well matched with solutions by commercial FE program.

Keywords - Finite element analysis, In-plane and out-of-plane buckling, Steel beams, Prestressed, Tendon

1.서론

외부에서 초기 긴장력이 도입된 PS 강재보의 구조적 안 정성에 대한 문제는 지난 수십 년 동안 활발히 진행되어온 연구 주제이다. PS 보/기둥은 부재 길이에 걸쳐서 텐던이 거 치되는 다수의 편향부(deviator)가 설치되어 있고, 외부에서 긴장력이 도입되는 텐던에 의하여 구조 강성이 증진되는 효 율적인 구조부재이다. 보-기둥에서 횡변위와 비틀림 변위 가 구속된 지점 사이의 길이인 비지지 길이가 증가할수록 횡좌굴 강도는 현격히 감소한다는 점은 널리 알려져 있는 사실이다. 텐던에 의하여 외부 긴장력이 도입되는 PS 보/기

Copyright © 2022 by Korean Society of Steel Construction *Corresponding author.

Tel. +82-43-261-3241 Fax. +82-43-275-2377 E-mail. sbkim@chungbuk.ac.kr 등에서는 텐던이 거치되는 편향부에서 강형의 횡변위와 비 틀림 변위가 구속되는 효과가 발생한다. 즉, PS 강재보의 비 지지 길이가 보의 전체 지간에서 지간 내부에 설치되는 편 향부 사이의 간격으로 감소되어 결과적으로 PS 강재보의 좌굴강도가 증가한다.

이러한 긴장력이 도입된 PS 강구조의 거동에 대한 초창 기 연구로서 Belenya^[1]는 PS 강구조의 임계하중에 대한 연 구를 수행하였고, 그 이후 외부에서 텐던에 의하여 긴장력 이 도입되는 보-기둥의 좌굴거동에 대한 다수의 해석적 및 실험적 연구가 발표되었다^{[2]-[5]}. 하지만 PS 강재보의 횡비틀 림 좌굴거동에 대한 연구는 많지 않은 실정이며 대부분의 연구는 외부 긴장 PS 강재보의 면내 휨거동에 대한 연구들 이다^{[6]-[9]}. Belletti and Gasperi^[10]는 길이가 40 m인 PS 강재 거더에 대하여 쉘요소를 사용한 비선형해석을 통하여 PS 거더의 파괴거동을 분석하였다. Ghafoori and Motavalli^[11] 는 서로 다른 긴장력이 도입된 접착 및 비접착 CFRP 라미네 이트로 보강된 강재 보의 횡비틀림 좌굴거동을 수치적 및 실험적으로 규명하였다. Kambal and Jia^[12]는 다수의 편향부

Note.-Discussion open until October 31, 2022. This manuscript for this paper was submitted for review and possible publication on January 15, 2022; revised on March 02, 2022; approved on March 03, 2022.

가 있는 PS 강박스 거더의 휨 거동에 대한 유한요소해석기법 을 개발하고 해석결과를 실험값과 비교하였다. Ren *et al.*^[13] 은 Timoshenko 보 이론을 기반으로 집중 하중을 받는 PS 보 의 휨 거동에 대한 연구를 수행하였다.

최근에는 PS 강재보의 횡비틀림 좌굴거동에 대하여 Kim et al.^[14]은 편향부의 수에 따른 횡비틀림 좌굴하중에 대한 엄밀해를 제시하였고, 텐던에 의해 초기 긴장력이 도입된 대칭 단면을 갖는 강재보의 면외 좌굴에서 비접착/접착(unbonded/bonded) 편향부의 좌굴안정화 효과를 분석하였으 며, 초기장력으로 인한 편향부가 PS 보의 좌굴강도를 크게 향상시킬 수 있다는 사실을 규명하였다. Zhang^[15]은 Euler-보 모델과 Kirchhoff-판 모델을 기반으로 양단부에서 동일 한 휨모멘트를 받고 지간 중앙에 단일 편향부가 있는 PS 강 재보의 횡비틀림 좌굴하중을 해석적으로 도출하였다. Kim et al. [16]-[18]은 다수의 편향부가 있는 단순보 및 캔틸레버 PS 보의 휨좌굴 거동을 해석하였고, 접착/비접착 및 연속/불연 속 편향부가 설치되고 압축력 및 균일한 모멘트를 받는 대 칭 및 일축비대칭 단면을 갖는 단순/캔틸레버 PS 강재보에 대한 새로운 횡비틀림 좌굴이론을 발표하였다. Khosla^[19] 및 Hathout^[20]은 PS 기둥의 좌굴안정성에 대한 유한요소해 석기법에 대한 연구를 수행하였고 Chen et al.^[21] 및 Zhou et al.^[22]은 비접착 케이블 요소에 대한 유한요소해석을 발 표하였다.

하지만 PS 강재보의 횡비틀림 좌굴에 대한 유한요소 해 석에 대한 엄밀한 정식화는 현재까지 제시되지 않고 있으 며, 본 연구에서는 외부 긴장 PS 강재보의 면내 및 면외 횡비 틀림 좌굴거동에 대한 일반화된 유한요소해석기법을 새로 이 제시하였다. 초기 긴장력, 압축력 및 단부 휨모멘트의 세 가지 외력 조건 대하여 접착/비접착 편향부가 있는 PS 시스 템의 총 포텐셜 에너지를 유도하였다. 편향부의 수에 따른, 단순지지 및 캔틸레버 지지조건을 갖는 PS 강재보의 면내/ 면외 횡비틀림 좌굴거동을 분석하였다.

2. 외부에서 긴장되는 PS 강재보

불연속적으로 설치된 편향부의 편심이 일정하여 직선으 로 배치된 텐던에 의하여 초기장력이 도입된 PS 강재보가 있다. 강형에 부착되는 편향부는 완전한 강결되었다고 가정 하는 반면, 텐던과 편향부 사이의 연결은 접착되지 않은 상 태(즉, 축 방향으로 상대적인 슬라이딩을 허용하는 상태) 또 는 접착된 상태임을 가정한다.

Fig. 1(a)와 Fig. 1(b)는 프리스트레싱 이전에 2개의 편향 부와 직선 텐던이 있는 강재보에 대한 x, y, z 좌표와 강재보 의 단면형상이다. *l*은 강재보의 길이, *l*,는 긴장력이 도입되 기 이전 텐던의 무응력 길이이다. Fig. 1(c)는 초기장력 *H*_o에 의하여 단순지지된 PS 강재보의 변형된 형상이고, Fig. 1(d) 는 초기장력이 도입된 후 자유단에 작용하는 압축력과 휨모 멘트에 의해 변형된 PS 캔틸레버이다.

PS 강재보의 3차원 좌굴 문제를 정식화하기 위하여 다음 과 같은 가정을 도입한다.

- 편항부는 강재보와 완전한 강결로 연결되어 텐던의 변위는 연결부에서의 강재보의 변형에 의존한다.
- (2) 텐던의 초기 긴장력은 초기 PS 강재보 전체 길이에 따 라 일정하다.
- (3) 편향부와 텐던의 접촉은 외부 하중에 따라 접착 (bonded) 또는 비접착(unbonded) 상태에 놓인다.
- (4) 외부하중으로 인한 면내 부재력은 선형탄성해석으 로 결정되며, 면외좌굴거동에서 좌굴이 발생하기 이 전의 사전변형은 무시한다.

(b) Cross section of H-beam and double tendon

(c) Deformed PS simple beam under H_o

Fig. 1. PS beam under prestress and external forces

PS 강재보의 단부 지지조건으로 단순지지되어 있는 경우 를 'SB', 일단고정-일단자유인 경우를 'CB'라고 표기한다. *x*, *y*, *z*축 방향으로의 변위성분을 각각 *u*, *v*, *w*라고 하고, 단 면의 도심점에서 비틈회전각을 *θ*로 나타내면 두 가지 지지 조건에 대한 경계조건은 식 (1a) 및 식 (1b)과 같다.

• Simple beam (SB):

$$u_o = v_o = w_o = \theta_o = 0; \quad v_l = w_l = \theta_l = 0$$
 (1a)

• Cantilever beam (CB): $u_o = v_o = w_o = \theta_o = 0; \ v'_l = w'_l = \theta'_l = 0$ (1b)

여기서 위첨자 '은 부재축에 대한 미분을, 아래첨자 *o*과 *l*은 각각 부재 시작점과 끝점을 나타낸다. 또한, Fig. 1(a)와 같은 PS 강재보에서 *l*,와 *H*_o 사이의 관계는 Fig. 1(c)를 기반으로 하는 적합조건에서 도출되며 좌굴하중 산정에 있어서 일관 되게 적용된다. Fig. 1(c)와 Fig. 1(d)의 면내 변위 *u*, *v*는 각각 초기장력과 외부 하중에 의한 전체 변형 효과로 나타나고, 좌굴상태에서 면외 횡변위와 비틀림변위 *w*, *θ*가 발생한다. PS 강재보의 면내 및 면외 좌굴을 유발시키는 하중조건은 다음의 세 가지 경우를 고려한다.

- (1) LC1: 텐던의 초기 긴장력 H_o만 재하되는 경우(P=M
 = 0)
- (2) LC2: 텐던의 초기 긴장력 H_o와 압축력 P는 작용하고, 휨모멘트는 재하되지 않는 경우(M=0)
- (3) LC3: 텐던의 초기 긴장력 H_o와 부재 단부에서 휨모멘 트 M은 작용하고, 압축력은 작용하지 않는 경우(P=0)

3. PS 강재보의 총 포텐셜 에너지

본 장에서는 텐던과 편향부의 연결부에 대한 접착/비접 착 조건을 고려하여, 외력을 받는 PS 강재보의 총포텐셜에 너지를 도출한다. 외력으로 재하되는 P와 M의 영향으로 PS 강재보에 발생하는 부재 내력은 축력 F₁, 전단력 F₂, 휨모멘 트 M₃ 및 텐던의 장력 H가 발생한다. 여기서 모든 변위성분 은 단면의 도심점에서 정의됨을 유의한다. 단부모멘트 M은 quasi-tangential 모멘트라고 가정할 때 박벽 단면을 갖는 강 재보의 변형에너지 V_B는 식(2)와 같다^[18].

$$V_{B} = \frac{1}{2} \int_{0}^{l} \begin{bmatrix} EAu'^{2} + EI_{2}w''^{2} + EI_{3}v''^{2} \\ +GJ\theta'^{2} + EI_{\phi}\theta''^{2} \\ +F_{1}(v'^{2} + w'^{2} + \beta_{1}\theta'^{2}) \\ +F_{2}w'\theta + M_{3}(w''\theta - w'\theta') \end{bmatrix} dx$$

$$+Pu_{l} + M\left(v'_{o} - v'_{l} - \frac{1}{2}\theta_{l}w'_{l}\right)$$
(2)

여기서, *EA*, *EI*₂, *EI*₃, *GJ*, *EI*_φ는 각각 축강성, *x*₂와 *x*₃축에 대 한 휨강성, 비틈강성, 뒴(warping)강성이고 β₁ = (*I*₂ + *I*₃)/A 이다.

식(2)에서 내력모멘트 M3는 semi-tangential 모멘트를 의

미하고, 밑줄 친 항은 quasi-tangential 외력 모멘트 M의 2차 효과를 나타내며 이 두 모멘트의 개념을 Fig. 2에 도식적으 로 표기하였다^{[17],[23]}.

(a) Semi-tangential moment(b) Quasi-tangential momentFig. 2. Semi-tangential and quasi-tangential moment

한편, m-1개의 편향부가 설치되어 m개의 분할구간을 갖는 PS 강재보에서 텐던의 장력은 편향부와 텐던과의 비접 착/접착조건에 따라 각각 식 (3a), 식 (3b)와 같다^{[17],[18]}. 여기 서, H, H_i는 각각 비접착 및 접착조건에서 텐던의 장력이다.

$$\begin{aligned} \frac{Hl_{c}}{EA_{c}} &= l - l_{c} + u_{mq} - u_{1p} + (v'_{mq} - v'_{1p})e \\ &+ \frac{e}{2} \left(\theta_{mq} w'_{mq} - \theta_{1p} w'_{1p}\right) \\ &+ \sum_{i=1}^{m} \left(\frac{\left(v_{iq} - v_{ip}\right)^{2}}{2l_{i}} + \frac{\left(\theta_{iq} - \theta_{ip}\right)^{2}b^{2}}{2l_{i}}\right) \\ &+ \frac{\left(w_{iq} - w_{ip} + \theta_{ip}e - \theta_{iq}e\right)^{2}}{2l_{i}} \\ \\ \frac{H_{i}l_{ci}}{EA_{c}} &= l_{i} - l_{ci} - u_{iq} - u_{ip} + \left(v'_{iq} - v'_{ip}\right)e \\ &+ \frac{e}{2} \left(\theta_{iq} w'_{iq} - \theta_{ip} w'_{ip}\right) \\ &+ \frac{\left(v_{iq} - v_{ip}\right)^{2}}{2l_{i}} + \frac{\left(\theta_{iq} - \theta_{ip}\right)^{2}b^{2}}{2l_{i}} \\ &+ \frac{\left(w_{iq} - w_{ip} + \theta_{ip}e - \theta_{iq}e\right)^{2}}{2l_{i}} \quad (i = 1, \dots, m) \end{aligned}$$

여기서, *l_i*, *l_{ci}*는 각각 *i*번째 텐던에 대응하는 분할구간에서 의 강재보의 길이와 텐던의 무응력 길이; *u_i*, *v_i*, *w_i*, *θ_i*는 각각 *i*번째 분할구간에서의 축방향변위, 횡방향변위 및 비틀림 변위; *b*는 Fig. 1(b)에 도시한 바와 같이 이중으로 배열된 텐 던 사이의 이격거리; 아래첨자 *ip*, *iq*는 각각 *i*번째 구간의 시 작점과 끝점을 나타낸다. 또한, 비접착조건과 접착조건에 대한 텐던의 탄성변형에너지는 각각 식(4a), 식(4b)와 같다.

$$V_{T}^{U} = \frac{EA_{c}}{2l_{c}} \begin{bmatrix} (l - l_{c} + u_{mq} - u_{1p} + (v'_{mq} - v'_{1p})e)^{2} \\ + (w'_{mq} - w'_{1p})^{2}b^{2} \end{bmatrix} \\ + \frac{He}{2} (\theta_{mq}w'_{mq} - \theta_{1p}w'_{1p}) \\ + H\sum_{i=1}^{m} \begin{pmatrix} (v_{iq} - v_{ip})^{2} \\ + (w_{iq} - w_{ip} + \theta_{ip}e - \theta_{iq}e)^{2} \\ + \frac{(w_{iq} - w_{ip} + \theta_{ip}e - \theta_{iq}e)^{2}}{2l_{i}} \end{pmatrix}$$
(4a)

$$V_{T}^{B} = \sum_{i=1}^{m} \frac{EA_{c}}{2l_{ci}} \begin{bmatrix} (l_{i} - l_{ci} + u_{iq} - u_{ip} + (v_{iq}^{'} - v_{ip}^{'})e)^{2} \\ + (w_{iq}^{'} - w_{ip}^{'})^{2}b^{2} \end{bmatrix} \\ + \sum_{i=1}^{m} H_{i} \begin{bmatrix} \frac{e}{2} (\theta_{iq}w_{iq}^{'} - \theta_{ip}w_{ip}^{'}) \\ + \frac{(v_{iq} - v_{ip})^{2}}{2l_{i}} + \frac{(\theta_{iq} - \theta_{ip})^{2}b^{2}}{2l_{i}} \\ + \frac{(w_{iq} - w_{ip} + \theta_{ip}e - \theta_{iq}e)^{2}}{2l_{i}} \end{bmatrix}$$
(4b)

여기서, 위첨자 U, B는 각각 비접착(unbonded)과 접착(bonded) 편향부를 의미하고, 아래첨자 T는 텐던을 나타낸다. PS 강재보를 편향부에 따른 m개의 구간으로 분할하여 식 (2)를 각각의 분할구간에 대하여 적분하면 강재보의 변형에너지 는 식 (5)와 같고, 아래첨자 B는 강재보를 의미한다.

$$V_{B} = \frac{1}{2} \sum_{i=1}^{m} \int_{0}^{l_{i}} \begin{bmatrix} EAu_{i}^{'2} + EI_{2}w_{i}^{''2} + EI_{3}v_{i}^{''2} \\ +GJ\theta_{i}^{'2} + EI_{\phi}\theta_{i}^{''2} \\ +F_{1}(v_{i}^{'2} + w_{i}^{'2} + \beta_{1}\theta_{i}^{'2}) \\ -2M_{3}w_{i}^{'}\theta_{i}^{'} \end{bmatrix} dx_{i}$$

$$+ \frac{1}{2} \left(M_{3}(l)w_{l}^{'}\theta_{l} - M_{3}(0)w_{o}^{'}\theta_{o} \right) \\ +Pu_{l} + M \left(v_{o}^{'} - v_{l}^{'} - \frac{1}{2}\theta_{l}w_{l}^{'} \right)$$
(5)

여기서, 휨모멘트 *M*₃는 부재축을 따라 일정하므로 전단력 *F*₂ = 0이고, 외력모멘트 *M*과 텐던의 긴장력 *H* 및 편심거리 *e*의 관계식 *M*₃(*l*) = *M* – *He*를 고려하면 PS 강재보의 총 포 텐셜 에너지는 편향부의 비접착조건 및 접착조건에 대하여 각각 식(6a), 식(6b)와 같이 유도된다.

$$\Pi^{U} (= V_{B} + V_{T}^{U}) = \Pi_{B}
+ \frac{EA_{c}}{2l_{c}} \left[(l - l_{c} + u_{mq} - u_{1p} + (v'_{mq} - v'_{1p})e)^{2} \right]
+ H\sum_{i=1}^{m} \left[\frac{(v_{iq} - v_{ip})^{2}}{2l_{i}} + \frac{(\theta_{iq} - \theta_{ip})^{2}b^{2}}{2l_{i}} + \frac{(\theta_{iq} - \theta_{ip})^{2}b^{2}}{2l_{i}} \right]
+ Pu_{mq} - M(v'_{mq} - v'_{1p})^{2}
\Pi^{B} (= V_{c} + V_{c}^{B}) = \Pi$$
(6a)

$$+ \sum_{i=1}^{m} \frac{EA_c}{2l_{ci}} \begin{bmatrix} (l_i - l_{ci} + u_{iq} - u_{ip}(v'_{iq} - v'_{ip})e)^2 \\ + (w'_{iq} - w'_{ip})^2 b^2 \end{bmatrix}$$

$$+ \sum_{i=1}^{m} H_i \left(\frac{(v_{iq} - v_{ip})^2}{2l_i} + \frac{(\theta_{iq} - \theta_{ip})^2 b^2}{2l_i} \\ + \frac{(w_{iq} - w_{ip} + \theta_{ip}e - \theta_{iq}e)^2}{2l_i} \right)$$

$$+ Pu_{mq} - M(v'_{mq} - v'_{1p})$$

$$(6b)$$

여기서,

$$\Pi_{B} = \frac{1}{2} \sum_{i=1}^{m} \int_{0}^{l_{i}} \begin{bmatrix} EAu_{i}^{'2} + EI_{2}w_{i}^{''2} + EI_{3}v_{i}^{''2} \\ +GJ\theta_{i}^{'2} + EI_{\phi}\theta_{i}^{''2} \\ +F_{1}(v_{i}^{'2} + w_{i}^{'2} + \beta_{1}\theta_{i}^{'2}) \\ -2M_{3}w_{i}^{'}\theta_{i}^{'} \end{bmatrix} dx_{i}$$

4. PS 강재보의 면내 선형해석

텐던과 편향부의 접착/비접착 두 가지 조건에 대한 총 포 텐셜 에너지 식(6)을 적용하면, 초기 긴장력(*H*_o), 압축력(*P*), 휨모멘트(*M*)를 받는 PS 강재보의 면내 변형에 대한 선형 해석을 수행할 수 있다. 우선, 초기 긴장력만 재하되는 LC1 에서 변형의 적합조건은 식 (7a) 및 식 (7b)와 같다^[17]. 또한, 초기 긴장력(*H*_o), 압축력(*P*), 휨모멘트(*M*)에 의한 텐던의 장력(*H*)은 식 (8)과 같이 산정된다.

$$\frac{l_c}{l} = \frac{EA_c - H_o A_c (e^2 + r^2)/I_3}{EA_c + H_o}$$
(7a)

$$H = H_o - C_P P + C_M M \tag{7b}$$

 $\vec{\alpha} \not\supset \vec{k},$ $r^{2} = \frac{I_{3}}{A}, C_{p} = r^{2}C, C_{m} = eC, C = \frac{EA_{c} + H_{o}}{EI_{3} + EA_{c}(e^{2} + r^{2})}$ (8)

결과적으로 부재력 성분인 축력, 휨모멘트, 전단력은 식 (9) 와 같다.

$$F_1 = -H - P, \quad M_3 = M - He, \quad F_2 = 0$$
 (9)

상기 식 (7) - 식 (9)는 단순지지 및 Cantilever 지지조건에서 임의의 개수를 갖는 비접착 편향부를 갖는 PS 강재보에서 성립한다^[18]. 접착 편향부의 경우 식 (7), 식 (8)은 식 (10a) 및 식 (10b)와 같이 수정되어 적용할 수 있다.

$$\frac{l_{ci}}{l_i} = \frac{EA_c - H_o A_c (e^2 + r^2)/I_3}{EA_c + H_o}$$
(10a)

$$H_i = H_o - C_P P + C_M M$$
 (*i* = 1, ..., *m*) (10b)

식 (10)에서 $H_1 = \dots = H_m = H$, $\sum_{i=1}^m l_i = l$, $\sum_{i=1}^m l_{ci} = l_c$ 의 조 건이 성립한다. 세 가지 외력 조건에서 부재력에 대한 면내

선형해석결과는 Table 1에 제시되어있다.

Load case H, H_i F1М3 F2LC1 H_{a} $-H_o$ $-H_{o}e$ 0 LC2 $H_o - C_P P$ $H_o + C_P P - P$ $-H_{o}e + C_{P}Pe$ 0 LC3 $H_o + C_M M$ $-H_o - C_M M$ $M - H_0 e$ 0

Table 1. Internal force of in-plane behavior

5. PS 강재보의 좌굴에 대한 유한요소해석

Fig. 3와 같이 *m*-1개의 편향부를 갖는 단순지지보에서 비 편심 케이블(Fig. 3(a)) 및 편심 케이블(Fig. 3(b))을 갖는 PS 강재보에 축력과 휨모멘트가 작용하고 있다. 본 장에서는 PS 강재보의 면내 및 면외 좌굴 안정성에 대한 유한요소해 석에 대한 정식화 과정을 기술하였다.

Fig. 3. PS beam with deviators under H_o , P and M

5.1 PS 강재보의 유한요소해석모델

PS 강재보에 설치되는 편향부를 강체로 가정하였고, 텐 던의 포텐셜 에너지를 강재보의 변위성분에 대하여 유도하 였기 때문에, 3차원 좌굴해석을 위하여 강재보만 유한요소 해석모델에 포함된다. 특히, 식 (6)의 총 포텐셜 에너지 항들 은 면내 및 면외 성분으로 구분되므로, 면내 및 면외 좌굴거 동을 구분하여 정식화한다.

Fig. 4는 m개의 분할구간과 각 분할구간에서 n개의 박벽 보 요소로 모델링되어 총 N(= m × n)개의 유한요소로 이산 화된 PS 강재보이다. 각 분할구간에서 절점의 수는 n + 1개 이고 전체 모델에서 총 절점수는 N + 1개이다. 또한 Fig. 5(a) 는 면내 좌굴해석을 위한 절점 당 두 개의 자유도(2-DOF, 면 내횡변위와 면내회전변위) 성분을 갖고 있는 요소를 나타 내고, Fig. 5(b)는 면외 좌굴해석을 위한 절점 당 네 개의 자 유도(4-DOF, 면외 횡변위, 면외 회전변위, 비틀림변위, 뒴 [warping]변위) 성분을 갖고 있는 요소이다.

Fig. 4. FE modeling of PS beams (30 elements)

5.2 PS 강재보의 면내 좌굴 유한요소해석

식 (6)으로부터 축력(P) 및 휨모멘트(M)을 받는 PS 강재 보의 면내좌굴 거동에 대한 총 포텐셜 에너지는 비접착/접 착조건에 대하여 식 (11)과 같이 나타낼 수 있다. 식 (12)에 서 In은 면내좌굴거동; $\omega_3 = v'$; $in = i \times n$; $d_j = j$ -th보 요소의 길이를 나타낸다. 선형 탄성해석에서 축력과 휨모멘트에 대 한 외적 에너지 성분은 $M(\omega_3^{N+1} - \omega_3^1) - Pu^{N+1}$ 으로 고려되지 만, 밑줄 친 항들은 제외된다. 그러나, 면내 좌굴해석에서는 외적에너지 성분이 제외되고 밑줄 친 항들이 포함된다.

$${}^{In}\Pi^{U} = {}^{In}V_{B} + {}^{In}V_{T}^{U}; \; {}^{In}\Pi^{B} = {}^{In}V_{B} + {}^{In}V_{T}^{B}$$
(11)

여기서,

$${}^{In}V_B = \frac{1}{2} \sum_{j=1}^N \int_0^{d_j} \left(EAU_j^{'2} + EI_3V_j^{''2} + \frac{F_1V_j^{'2}}{F_1V_j^{'2}} \right) dx$$
(12a)
+ $Pu^{N+1} - M\left(\omega_3^{N+1} - \omega_3^1\right)$

$${}^{In}V_T^U = \frac{EA_c}{2l_c} \left(l - l_c + u^{N+1} - u^1 + \omega_3^{N+1}e - \omega_3^1 e \right)^2 + \frac{1}{2}H \sum_{i=1}^m \frac{1}{l_i} \left(v^{in+1} - v^{in-n+1} \right)^2$$
(12b)

$${}^{In}V_{T}^{B} = \sum_{i=1}^{m} \frac{EA_{c}}{2l_{ci}} \left({l_{i} - l_{ci} + u^{in+1} - u^{in-n+1} \atop +e\omega_{3}^{in+1} - e\omega_{3}^{in-n+1}} \right)^{2} + \sum_{\underline{i=1}}^{m} \frac{H_{i}}{2l_{i}} \left(v^{in+1} - v^{in-n+1} \right)^{2}$$
(12c)

Fig. 3(a)에서와 같이 편심이 없는 텐던의 초기 긴장력을 받는 PS 강재보의 압축력에 의한 면내 좌굴해석을 위한 에 너지 성분은 식 (13)과 같다.

$${}^{In}V_B = \frac{1}{2}\sum_{j=1}^N \int_0^{d_j} \left(EI_3V_j^{''2} + F_1V_j^{'2}\right) dx$$
(13a)

$${}^{In}V_T^U = \frac{1}{2}H\sum_{i=1}^m \frac{1}{l_i} \left(v^{in+1} - v^{in-n+1}\right)^2 \tag{13b}$$

$${}^{In}V_T^B = \sum_{i=1}^m \frac{H_i}{2l_i} \left(v^{in+1} - v^{in-n+1} \right)^2$$
(13c)

*j*번째 요소의 면내 절점변위벡터를 **d***j*^{**h**}라고 하면, 보 요소 의 면내 횡변위 *V_j*는 식 (14)와 같고 Hermitian 3차 다항식은 식 (15)와 같다.

$$V_{j} = h_{1}v^{j} + h_{2}\omega_{3}^{j} + h_{3}v^{j+1} + h_{4}\omega_{3}^{j+1} = \mathbf{h}_{\mathbf{v}j}^{\mathbf{T}}\mathbf{d}_{j}^{\mathbf{In}}$$
(14)

$$\mathbf{d_{j}^{in}} = \{v^{j}, \omega_{3}^{j}, v^{j+1}, \omega_{3}^{j+1}\}^{T}; \quad \mathbf{h_{vj}^{T}} = \{h_{1}, h_{2}, h_{3}, h_{4}\}$$
(15)

여기서,

$$h_{1} = (2x^{3} - 3x^{2}d_{j} + d_{j}^{3})/d_{j}^{3}$$

$$h_{2} = (x^{3}d_{j} - 2x^{2}d_{j}^{2} + xd_{j}^{3})/d_{j}^{3}$$

$$h_{3} = (-2x^{3} + 3x^{2}d_{j})/d_{j}^{3}$$

$$h_{4} = (x^{3}d_{j} - x^{2}d_{j}^{2})/d_{j}^{3}$$

또한, **d**^{In} = { v^1 , ω_3^1 , v^2 , ω_3^2 , ..., v^{N+1} , ω_3^{N+1} }^T를 PS 강재 보 구조물의 변위벡터로 정의하면, PS 강재보의 면내 좌굴해 석을 위한 에너지는 식 (16)과 같다.

$${}^{In}V_B = \frac{1}{2} \left(\mathbf{d}^{\mathbf{In}} \right)^{\mathbf{T}} \left(\mathbf{K}_{\mathbf{BE}}^{\mathbf{In}} + \mathbf{K}_{\mathbf{BG}}^{\mathbf{In}} \right) \mathbf{d}^{\mathbf{In}}$$
(16)

여기서,

$$\mathbf{K}_{\mathbf{B}\mathbf{E}}^{\mathbf{In}} = \sum_{j=1}^{N} \mathbf{k}_{\mathbf{B}\mathbf{E},\mathbf{j}}^{\mathbf{In}}; \qquad \mathbf{k}_{\mathbf{B}\mathbf{E},\mathbf{j}}^{\mathbf{In}} = \int_{0}^{d_{j}} EI_{3} \mathbf{h}_{\mathbf{vj}}^{''} (\mathbf{h}_{\mathbf{vj}}^{''})^{\mathrm{T}} dx_{j}$$
$$\mathbf{K}_{\mathbf{B}\mathbf{G}}^{\mathbf{In}} = \sum_{j=1}^{N} F_{1}^{j} \mathbf{k}_{\mathbf{B}\mathbf{G},\mathbf{j}}^{\mathbf{In}}; \quad \mathbf{k}_{\mathbf{B}\mathbf{G},\mathbf{j}}^{\mathbf{In}} = \int_{0}^{d_{j}} \mathbf{h}_{\mathbf{vj}}^{'} (\mathbf{h}_{\mathbf{vj}}^{''})^{\mathrm{T}} dx_{j}$$

식 (16)에서 K^I_{BE}, K^I_{GB}는 각각 3(N + 1) × 3(N + 1) 탄성강도 행렬 및 기하강도행렬; k^I_{BE,j}, k^I_{BG,j}, F^I는 각각 *j*번째 보요소의 6×6 탄성 및 기하강도행렬 그리고 축력이다.

한편, 식 (13)에서 텐던과 관련된 에너지를 상기에서 기 술한 PS 강재보와 같은 방법으로 표현하면 아래의 식 (17) 과 같다.

$${}^{In}V_T^U = \frac{1}{2} \left(\mathbf{d}^{\mathbf{In}} \right)^{\mathbf{T}\mathbf{In}} \mathbf{K}_{\mathbf{TG}}^{\mathbf{U}} \mathbf{d}^{\mathbf{In}}; \ {}^{In}V_T^B = \frac{1}{2} \left(\mathbf{d}^{\mathbf{In}} \right)^{\mathbf{T}\mathbf{In}} \mathbf{K}_{\mathbf{TG}}^{\mathbf{B}} \mathbf{d}^{\mathbf{In}} (17)$$

$${}^{In}\mathbf{K}_{TG}^{U} = H \sum_{i=1}^{m} {}^{In}\mathbf{k}_{TG,i}; \quad {}^{In}\mathbf{K}_{TG}^{B} = \sum_{i=1}^{m} H_{i}{}^{In}\mathbf{k}_{TG,i}$$
$${}^{In}\mathbf{k}_{TG,i} = \frac{1}{l_{i}} \begin{bmatrix} \mathbf{t2} & \dots & -\mathbf{t2} \\ \dots & \dots & \mathbf{t2} \end{bmatrix}, \mathbf{t2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

식 (17)에서 ^{In}K^U_{TG}, ^{In}K^E_{TG}는 각각 비접착 및 접착조건에서의 3(N + 1) × 3(N + 1) 기하강도행렬; ^{In}k_{TG},는 *i*번째 텐던의 3(n + 1) × 3(n + 1) 강도행렬; t2 = 3×3 부분행렬이다. 그러 므로 비접착조건에서 LC1과 LC2 하중조건의 경우에 대 한 면내 좌굴하중은 Table 1의 결과를 고려하여 식 (18)로 부터 산정된다.

LC1:
$$\mathbf{K}_{BE}^{In} \mathbf{d}^{In} = H_o (\mathbf{K}_{BG1}^{In} - {}^{In}\mathbf{K}_{TG1}^{U}) \mathbf{d}^{In}$$

LC2:
$$(\mathbf{K}_{BE}^{In} - H_o \mathbf{K}_{BG1}^{In} + H_o {}^{In}\mathbf{K}_{TG1}^{U}) \mathbf{d}^{In}$$
$$= P (-C_P \mathbf{K}_{BG1}^{In} + C_P {}^{In}\mathbf{K}_{TG1}^{U}) \mathbf{d}^{In}$$
(18a)

식 (18a)에서 **K**^{In}_{BG1}, ^{In}**K**^U_{TG1}는 아래의 식 (18b)와 같이 **K**^{In}_{BG}, ^{In}**K**^U_{TG}에서 괄호 안의 값을 대입하여 얻는다.

$$\mathbf{K}_{\mathbf{BG1}}^{\mathbf{In}} = \mathbf{K}_{\mathbf{BG}}^{\mathbf{In}}(F_1^j = 1); \ {}^{\mathbf{In}}\mathbf{K}_{\mathbf{TG1}}^{\mathbf{U}} = {}^{\mathbf{In}}\mathbf{K}_{\mathbf{TG}}^{\mathbf{U}}(H = 1)$$
(18b)

접착조건에서의 면내 좌굴해석 조건은 *H*_i를 1.0으로 두 고, 위첨자 '**U**'를 '**B**'로 변환하여 설정된 식 (18)의 고유치 해석으로부터 면내좌굴에 대한 긴장력 *H*_{cr}과 압축력 *P*_{cr}을 산정할 수 있다.

5.3 PS 강재보의 면외 좌굴 유한요소해석

식 (6)으로부터 축력(P) 및 휨모멘트(M)을 받는 PS 강재 보의 면외 좌굴거동에 대한 총 포텐셜 에너지는 비접착/접 착조건에 대하여 아래의 식 (19)와 같다.

$${}^{out}\Pi^U = V_B + V_T^U; \quad {}^{out}\Pi^B = V_B + V_T^B$$
(19)

여기서,

$$V_{B} = \frac{1}{2} \sum_{j=1}^{N} \int_{0}^{d_{j}} \begin{bmatrix} EI_{2}W_{j}^{"2} + EI_{\phi}\theta_{j}^{"2} \\ +GJ\theta_{j}^{'2} + F_{1}^{j}(W_{j}^{'2} + \beta_{1}\theta_{j}^{'2}) \\ -2M_{3}^{j}W_{j}^{'}\theta_{j}^{'} \end{bmatrix} dx_{j} \quad (20a)$$

$$V_T^U = \frac{EA_c b^2}{2l_c} \left(\omega_2^{N+1} - \omega_2^1\right)^2 + \sum_{i=1}^m \frac{H}{2l_i} \begin{bmatrix} \left(\omega_1^{in+1} - \omega_1^{in-n+1}\right)^2 \\ + \left(\frac{W^{in+1} - \omega_1^{in+1}e}{-W^{in-n+1} + \omega_1^{in-n+1}e}\right)^2 \end{bmatrix}$$
(20b)

$$V_{T}^{B} = \sum_{i=1}^{m} \begin{bmatrix} \frac{EA_{c}b^{2}}{2l_{ci}} \left(\omega_{2}^{in-n+1} - \omega_{2}^{in+1}\right)^{2} \\ + \frac{H_{i}}{2l_{i}} \left(\omega_{1}^{in-n+1} - \omega_{1}^{in+1}\right)^{2}b^{2} \\ + \frac{H_{i}}{2l_{i}} \left(\frac{W^{in+1} - \omega_{1}^{in+1}e}{-W^{in-n+1} + \omega_{1}^{in-n+1}e}\right)^{2} \end{bmatrix}$$
(20c)

식 (19)에서 위첨자 out은 면외 좌굴거동을 나타낸다. j번째 요소의 면외 절점변위벡터를 **d**j로 정의하면, 면외 횡변위 w 와 비틀림변위 0는 아래와 같이 3차 Hermitian 다항식을 이 용하여 나타낼 수 있다.

$$W_{j} = h_{1}w^{j} - h_{2}\omega_{2}^{j} + h_{3}w^{j+1} - h_{4}\omega_{2}^{j+1} = \mathbf{h}_{wj}^{T}\mathbf{d}_{j}$$
(21a)

$$\theta_j = h_1 \omega_1^j - h_2 f^j + h_3 \omega_1^{j+1} - h_4 f^{j+1} = \mathbf{h}_{\theta \mathbf{j}}^{\mathbf{T}} \mathbf{d}_{\mathbf{j}}$$
(21b)

여기서,

$$\mathbf{d_j} = \left\{ w^j, \omega_2^j, \omega_1^j, f^j, w^{j+1}, \omega_2^{j+1}, \omega_1^{j+1}, f^{j+1} \right\}^T$$
(22a)

$$\omega_2 = -w', \quad \omega_1 = \theta, \quad f = -\theta' \tag{22b}$$

$$\mathbf{h}_{\mathbf{\theta}\mathbf{j}}^{\mathrm{T}} = \{0, 0, h_1, -h_2, 0, 0, h_3, -h_4\}$$
(22c)

식 (21)을 식 (20a)에 대입하면

$$V_B = \frac{1}{2} \mathbf{d}^{\mathrm{T}} (\mathbf{K}_{\mathrm{BE}} + \mathbf{K}_{\mathrm{BG}}) \mathbf{d}$$
(23)

여기서,

$$\begin{split} \mathbf{K}_{\mathbf{B}\mathbf{E}} &= \sum_{j=1}^{N} \mathbf{k}_{\mathbf{B}\mathbf{E},\mathbf{j}} \\ \mathbf{k}_{\mathbf{B}\mathbf{E},\mathbf{j}} &= \int_{0}^{d_{j}} \begin{pmatrix} EI_{2}\mathbf{h}_{\mathbf{w}j} & \mathbf{h}_{\mathbf{w}j} & \mathbf{T} \\ +GJ\mathbf{h}_{\mathbf{\theta}j} & \mathbf{h}_{\mathbf{\theta}j} & \mathbf{T} \end{pmatrix} dx_{j} \\ \mathbf{K}_{\mathbf{B}\mathbf{G}} &= \sum_{j=1}^{N} \mathbf{k}_{\mathbf{B}\mathbf{G},\mathbf{j}} \\ \mathbf{k}_{\mathbf{B}\mathbf{G},\mathbf{j}} &= \int_{0}^{d_{j}} \begin{bmatrix} F_{1}^{j}(\mathbf{h}_{\mathbf{w}j} & \mathbf{h}_{\mathbf{w}j} & \mathbf{T} + \beta_{1}\mathbf{h}_{\mathbf{\theta}j} & \mathbf{h}_{\mathbf{\theta}j} & \mathbf{T} \\ +M_{3}^{j}(\mathbf{h}_{\mathbf{w}j} & \mathbf{h}_{\mathbf{w}j} & \mathbf{T} + \mathbf{h}_{\mathbf{\theta}j} & \mathbf{h}_{\mathbf{\theta}j} & \mathbf{T} \end{pmatrix} dx_{j} \end{split}$$

여기서, $d = \{w^1, w_2^1, \theta^1, f^1, w^2, w_2^2, \theta^2, f^2, ..., w^{n+1}, w_2^{n+1}, \theta^{n+1}, f^{n+1}\}^T$; K_{BE}, K_{BG}는 각각 4(N+1) × 4(N+1) 강도행렬; k_{BE,j}, k_{BG,j}는 각각*j*번째 요소의 8×8 탄성강도행렬 및 기하강 도행렬이다. 텐던의 비접착조건 하에서 PS 강재보의 면외 좌굴해석을 위한 총 포텐셜 에너지 식(20b)는 식(24)와 같다.

$$V_T^U = \frac{1}{2} \mathbf{d}^{\mathbf{T}} \left(\mathbf{K}_{\mathbf{T}\mathbf{E}}^{\mathbf{U}} + \mathbf{K}_{\mathbf{T}\mathbf{G}}^{\mathbf{U}} \right) \mathbf{d}$$
(24)

여기서,

$$\mathbf{K}_{\mathrm{TE}}^{\mathrm{U}} = \frac{EA_{c}b^{2}}{l_{i}} \begin{bmatrix} \mathbf{t3} & \dots & -\mathbf{t3} \\ -\mathbf{t3} & \dots & \mathbf{t3} \end{bmatrix}, \mathbf{t3} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{K}_{\mathrm{TG}}^{\mathrm{U}} = H \sum_{i=1}^{m} \mathbf{k}_{\mathrm{TG},i}^{\mathrm{U}}$$
$$\mathbf{k}_{\mathrm{TG},i}^{\mathrm{U}} = \frac{1}{l_{i}} \begin{bmatrix} \mathbf{t4} & \dots & -\mathbf{t4} \\ -\mathbf{t4} & \dots & \mathbf{t4} \end{bmatrix}, \mathbf{t4} = \begin{bmatrix} 1 & 0 & -e & 0 \\ 0 & 0 & 0 & 0 \\ -e & 0 & e^{2} + b^{2} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

식 (24)에서 K^U_{TE}, K^U_{TG}는 각각 비접착조건 하에서 텐던의 4(N+1) × 4(N+1) 탄성 및 기하강도행렬; k^U_{TG}는 4(n+1) × 4(n+1) 강성행렬; **t3**, **t4**는 4×4 부분행렬이다.

한편, 비접착 편향부의 경우 LC1, LC2, LC3에 대한 횡비 틀림 좌굴하중은 식(25)와 같은 고유치해석으로 산정된다.

LC1:
$$(\mathbf{K}_{\mathbf{BE}} + \mathbf{K}_{\mathbf{TE}}^{\mathbf{U}})\mathbf{d} = H_o(\mathbf{K}_{\mathbf{BG1}} - \mathbf{K}_{\mathbf{TG1}}^{\mathbf{U}})\mathbf{d}$$
 (25a)

LC2:
$$(\mathbf{K}_{BE} + \mathbf{K}_{TE}^{U} - H_o \mathbf{K}_{BG1} + H_o \mathbf{K}_{TG}^{U})\mathbf{d}$$

= $P(\mathbf{K}_{BG2} + C_P \mathbf{K}_{TG1}^{U})\mathbf{d}$ (25b)

LC3:
$$(\mathbf{K}_{BE} + \mathbf{K}_{TE}^{U} - H_o \mathbf{K}_{BG1} + H_o \mathbf{K}_{TG}^{U})\mathbf{d}$$

= $M(\mathbf{K}_{BG3} - C_M \mathbf{K}_{TG1}^{U})\mathbf{d}$ (25c)

LC1, LC2, LC3의 세 가지 하중조건에서 모든 부재내력은 상수이므로 기하강도행렬 K_{BG1}, K_{BG2}, K_{BG3}, K^U_{TG1}은 식(26) 과 같이 K_{BG}, K^U_{TG}에서 괄호 안의 값들을 대입하여 얻는다.

$$\begin{split} \mathbf{K}_{\mathbf{BG1}} &= \mathbf{K}_{\mathbf{BG}} \quad (F_1^j = 1, M_{3p}^j = e, F_2^j = 0) \\ \mathbf{K}_{\mathbf{BG2}} &= \mathbf{K}_{\mathbf{BG}} \quad (F_1^j = 1 - C_P, M_{3p}^j = -C_P e, F_2^j = 0) \\ \mathbf{K}_{\mathbf{BG3}} &= \mathbf{K}_{\mathbf{BG}} \quad (F_1^j = C_M, M_{3p}^j = -1, F_2^j = 0) \\ \mathbf{K}_{\mathbf{TG1}}^{\mathbf{U}} &= \mathbf{K}_{\mathbf{TG}}^{\mathbf{U}} \quad (H = 1) \end{split}$$
(26)

한편, 접착조건의 편향부를 다수 가지는 PS 강재보의 면 외 좌굴거동에 대한 총 포텐셜 에너지는 식 (27)과 같다.

$$V_T^B = \frac{1}{2} \mathbf{d}^{\mathrm{T}} \left(\mathbf{K}_{\mathrm{TE}}^{\mathrm{B}} + \mathbf{K}_{\mathrm{TG}}^{\mathrm{B}} \right) \mathbf{d}$$
(27)

여기서,

$$\mathbf{K}_{\text{TE}}^{\text{B}} = \sum_{i=1}^{m} \mathbf{k}_{\text{TE},i}^{\text{B}}; \qquad \mathbf{k}_{\text{TE},i}^{\text{B}} = \frac{EA_{c}b^{2}}{l_{ci}} \begin{bmatrix} \mathbf{t3} & \dots & -\mathbf{t3} \\ -\mathbf{t3} & \dots & \mathbf{t3} \\ -\mathbf{t3} & \dots & \mathbf{t3} \end{bmatrix}$$
$$\mathbf{K}_{\text{TG}}^{\text{B}} = \sum_{i=1}^{m} H_{i}\mathbf{k}_{\text{TG},i}^{\text{B}}; \qquad \mathbf{k}_{\text{TG},i}^{\text{B}} = \frac{1}{l_{i}} \begin{bmatrix} \mathbf{t4} & \dots & -\mathbf{t4} \\ -\mathbf{t4} & \dots & \mathbf{t4} \end{bmatrix}$$

식 (27)에서 K^U_E, K^B_fc는 각각 접착조건에서의 텐던의 탄성 강도행렬과 기하강도행렬; k^B_{fE,i}, k^B_{G,i}는 부분강성행렬이 다. 접착조건에서의 면외 좌굴해석에 대한 고유치 문제는 식 (25)에서 위첨자 'U'를 'B'로 변환하여 구성되고, 식 (26) 에 의한 기하강도행렬은 동일하게 적용된다.

한국강구조학회 논문집 제34권 제2호(통권 제177호) 2022년 4월 83

6. 수치해석 예

수치해석 예로서 접착/비접착 텐던에 대한 단순지지/캔틸 레버 지지조건의 PS 강재보의 면내 및 면외 좌굴 안정성에 대한 유한요소해석을 수행하고, 그 결과를 범용 유한요소해 석 프로그램을 활용한 결과와 비교·분석한다. 이 논문에서 정식화한 유한요소해석은 Matlab을 이용하여 구현하였다.

6.1 PS 강재보의 유한요소해석모델

Fig. 6는 지간 중앙에 단일 편향부가 설치된 PS 강재보에 대한 ABAQUS^[24]를 활용한 유한요소해석모델이다. 범용 유 한요소해석 프로그램인 ABAQUS 모델에서는 강재보, 텐던 및 편향부의 모든 구성요소가 모델링되어야 한다. 강재보는 뒴효과가 고려된 10개의 박벽 보요소(B32OS)를 사용하였 고, 편향부는 직경이 10 mm인 보요소(B32)를 사용하되 강체 효과를 구현하기 위하여 탄성계수로 강재보의 10¹⁰배 값을 입력했고, 텐던은 2개의 트러스 요소(T3D2)를 사용하였다.

Fig. 6. Full FE modeling of PS beam

ABAQUS에서 온도하중을 이용한 텐던의 좌굴 긴장력 해석(LC1)은 두 단계로 수행된다. 우선, 임의의 온도하중을 Pre-defined field 조건으로 텐던 요소에 도입하여 강재보에 발생하는 축력을 계산한다. 두 번째 단계로 동일한 온도하 중에 대한 고유치 해석을 통하여 좌굴온도를 산정한다. 최

properties

종적으로 좌굴 긴장력은 처음 단계에서 계산한 축력과 두 번째 단계에서 산출된 고유치의 곱으로 산정된다.

또한, 초기 긴장력이 도입된 PS 강재보의 좌굴축력(LC2) 과 좌굴모멘트(LC3) 해석에서 텐던의 초기 긴장력은 텐던 의 초기온도하중으로 부여하였다. 즉, PS 강재보의 길이(*l*) 가 12 m, 초기장력이 200 kN 도입되는 경우 텐던의 무응력 길이(*l*_c)는 식 (7)에 의하여 11.9869 m이고, 결과적으로 *l*-*l*_c = α*Tl*_c의 관계로부터 초기온도하중은 강재의 선팽창계수 (α = 1.2 × 10⁻⁵/℃)를 고려하여 *T* = 91.07 ℃가 적용된다.

그러나 본 논문에서 제시한 유한요소해석기법은 10개의 강재보만 해석모델링에 포함한다. Fig. 7은 H형강과 이중 텐던이 설치된 PS 강재보의 단면형상이고, Table 2에 재료 특성 및 단면 상수값들을 제시했다. 초기장력 H_o에 대하여 텐던의 무응력길이는 식 (7)과 식 (10)으로 산정하고, 식 (8) 에 의한 C_P와 C_M의 산정결과를 유한요소해석결과와 함께 Table 3에 제시했으며, 두 가지 결과와 동일함을 확인하였다.

PS 강재보의 3차원 좌굴해석을 수행하고 면내 및 면외 좌굴하중을 Tables 4-7에 나타냈다. 여기서 'DEV0', 'DEV1', 'DEV2', 'DEV5'는 부착된 편향부의 수가 각각 0, 1, 2, 5임 을 의미한다. 또한 'H-', 'P-' 및 'M-'은 각각 텐던의 긴장력, 압축력 및 단부 휨모멘트를 나타낸다.

6.2 텐던의 긴장력에 의한 면내 및 면외 좌굴(LC1)

Tables 4-5에 PS 강재보에 대한 면내 및 면외 좌굴을 발생 시키는 텐던의 긴장력(*H_{cr}*)을 산정하였다. 특히, 긴장력만 작 용하는 하중조건 LC1에 대한 면내 좌굴거동에서 Fig. 3(a) 에 도시된 바와 같이 텐던은 편심 없이 강재 단면의 도심축

Beam length <i>l</i> (mm)	Axial rigidity of beam <i>EA</i>	Axial rigidity of tendon <i>EA_c</i>	Flexural rigidity of beam with respect to strong axis <i>EI</i> ₃	Flexural rigidity of beam with respect to weak axis <i>EI</i> ₂	Torsional rigidity of beam <i>GJ</i>	Warping rigidity of beam EI_{ϕ}	Eccentricity of tendon <i>e</i> (mm)	Width of double tendons <i>b</i> (mm)
12,000	206 GPa × 11,700 mm ²	206 GPa × 1,257 mm ²	$\frac{206 \text{ GPa} \times}{1.989 \times 10^8 \text{ mm}^4}$	$\begin{array}{c} 206 \text{ GPa} \times \\ 6.750 \times 10^7 \text{ mm}^4 \end{array}$	$\begin{array}{c} 79.231 \ \text{GPa} \times \\ 7.750 \times 10^5 \ \text{mm}^4 \end{array}$	$\begin{array}{c} 206 \text{ GPa} \times \\ 1.371 \times 10^{12} \text{ mm}^6 \end{array}$	220	100

Fig. 7. H-beam section with double tendons

ш	C	Ç _P	C_M			
(kN)	FEM by this study	Use of Eq. (8)	FEM by this study	Use of Eq. (8)		
200	0.076076	0.076076	0.98451	0.98451		
400	0.076135	0.076135	0.98527	0.98527		

에 설치되어 있다. 본 논문에서 개발한 유한요소해석기법 에 의한 PS 강재보의 임계좌굴하중이 ABAQUS의 결과 와 매우 잘 일치하여, PS 강재보에 대하여 이 논문에서 개 발된 유한요소해석기법의 유효성과 정확성이 매우 우수함 을 입증하였다. 또한, Fig. 8에 편향부의 설치 유무에 따른 ABAQUS를 이용한 해석결과, 1차 좌굴모드를 표기하였다.

Table 4. In-plane buckling prestressed forces of PS simple/
cantilever beams (H_{cr} , e = 0 mm) (Unit: kN)

	FEM by	this study	ABAQUS			
Specimen	Simple beam	Cantilever beam	Simple beam	Cantilever beam		
H-DEV0	2,814.3	2,814.3	2,810.6	2,810.6		
H-DEV1	11,257	11,257	11,242	11,242		
H-DEV2	25,329	25,329	25,295	25,295		
H-DEV5	101,318	101,318	101,178	101,178		

편향부가 1개, 2개인 PS 강재보의 좌굴 긴장력은 편향부 가 없는 경우에 비하여 각각 거의 3배, 6배 크게 산정되어, 초 기장력에 의한 PS 강재보의 좌굴하중은 편향부의 수가 증 가할수록 급격히 증가함을 확인하였다. 특히, Table 4에서 편심이 없는 긴장력에 의한 면내 좌굴하중(*H_{cr}*, *e* = 0)은 단 순지지된 PS 보와 캔틸레버 PS 보의 경우 동일하다. 이는 편심이 없이 강재보의 도심축을 따라 텐던이 설치되어 긴장 력만 작용할 때 좌굴 긴장력은 강재보의 양단부 지지조건 과 무관하게 일정함을 의미하며, 지간 내부에서 인장된 텐 던의 안정화 효과에 기인한 것으로 판단된다.

Table 5에서 텐던의 편심효과를 고려하여 면외좌굴을 발 생시키는 텐던의 긴장력을 산정하였다. 편향부의 수와 텐던 의 배치에 따른 면외좌굴하중이 ABAQUS의 결과와 매우 일치함을 확인하였다. 특히, 편향부가 1개, 2개, 5개로 증가 함에 따라 단일텐던과 비접착 이중텐던의 좌굴하중은 거의 동일하지만, 접착 이중텐던의 좌굴하중은 단일텐던 상태에 비하여 각각 8.0%, 7.3%, 6.8%로 증가함을 확인하였다.

(a) 1st mode of H-DEV0 (b) 1st mode of H-DEV1 (single tendon, $H_{cr} = 645.12$ kN) (single tendon, $H_{cr} = 1,917.5$ kN) **Fig. 8.** Buckling mode using ABAQUS

6.3 초기 긴장된 PS 강재보의 좌굴 축력(LC2)

Table 6에서 텐던의 초기 긴장력(*H*_o)의 변화에 따른 압축 력(*P*)에 대한 면내 좌굴하중을 산정하여 ABAQUS의 전체 모델 해석결과와 함께 비교하였다. 단순지지와 캔틸레버 지 지 조건에 대하여 본 논문에서 개발한 유한요소해석 기법을

Specimen		Single	tendon		Unbonded double tendon				Bonded double tendon			
	FEM by this study		ABAQUS		FEM by this study		ABAQUS		FEM by this study		ABAQUS	
	Simple beam	Cantilever beam	Simple beam	Cantilever beam	Simple beam	Cantilever beam	Simple beam	Cantilever beam	Simple beam	Cantilever beam	Simple beam	Cantilever beam
H-DEV0	646.59	701.47	645.12	697.29	712.02	776.88	709.92	774.32	712.02	776.88	709.92	774.32
H-DEV1	1,924.7	2,016.9	1,917.5	2,006.5	1,924.7	2,041.2	1,916.9	2,118.9	2,079.3	2,191.9	2,069.9	2,181.2
H-DEV2	3,821.1	3,914.9	3,795.1	3,883.4	3,845.5	3,939.5	3,818.2	3,907.3	4,101.2	4,221.1	4,068.5	4,183.9
H-DEV5	13,750	13,835	13,396	13,461	13,750	13,863	13,394	13,500	14,684	14,801	14,268	14,372

Table 5. Out-of-plane buckling prestressed forces of PS simple/cantilever beams (H_{cr} , e = 220 mm)

Table 6. In-plane buckling loads (P_{cr} , e = 0 mm)

		Simple	e beam		Cantilever beam					
Specimen	$H_o = 2$	200 kN	$H_o = 4$	400 kN	$H_o = 2$	200 kN	$H_o = 400 \ kN$			
59.000	FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS		
P-DEV0	2,829.6	2,890.1	2,613.3	2,668.6	675.08	676.70	635.01	636.54		
P-DEV1	2,817.0	2,823.7	2,778.5	2,785.0	696.16	695.74	685.97	685.54		
P-DEV2	2,815.6	2,816.1	2,797.8	2,798.4	700.25	699.43	695.70	694.88		
P-DEV5	2,814.8	2,811.3	2,808.1	2,806.8	703.58	701.67	703.57	700.53		

(Unit: kN)

(Unit: kN)

적용한 PS 강재보의 좌굴하중은 ABAQUS 결과와 매우 유 사한 결과를 제시하고 있다.

편향부의 개수가 증가할수록 면내 좌굴축력 *P_{cr}*은 지지 조건에 대응하는 Euler 좌굴하중, 즉, 단순지지 및 캔틸레 버지지 조건에서 각각 π²*EI*₃/*l*²(= 2,808.3 kN)과 π²*EI*₃/(2*l*)² (= 702.1 kN)에 수렴한다.

Table 7과 Fig. 9에서 초기 긴장력(*H*_o)의 변화에 따른 외 부 압축력(*P*)에 대한 면외 좌굴하중을 산정하였다. 텐던의 초기 긴장력(*H*_o)이 증가할수록 *P*_{cr}값은 감소하며, 이는 초기 긴장력이 PS 강재보에는 압축력으로 작용함에 따른 결과임 을 알 수 있다. 편향부를 갖는 PS 보의 면외 좌굴하중 *P*_{cr}은 초기장력의 증가에 민감하지 않으며, 지간 내부에 설치되는 편향부의 수가 증가함에 따라 좌굴안정성이 크게 향상된다.

편향부의 개수가 증가할수록 면외 좌굴축력 *P_{cr}*은 지지 조건에 대응하는 Euler 좌굴하중, 즉, 단순지지 및 캔틸레 버지지 조건에서 각각 $\pi^2 EI_3/l^2$ (= 953.04 kN)과 $\pi^2 EI_3/(2l)^2$ (= 238.26 kN)에 수렴하고 있다. 텐던이 이중으로 배치되면 단일 배치되는 경우에 비하여 좌굴하중이 약 18 % 증가되

Table 7. Out-of-plane buckling loads (P_{cr} , e = 220 mm)

며, 편향부와 텐던의 접착/비접착조건에 따른 좌굴하중의 변화는 편향부의 개수가 증가할수록 커져서, 편향부가 5개 인 경우 최대 3.7% 발생함을 확인하였다.

6.4 초기 긴장된 PS 강재보의 횡좌굴 모멘트(LC3)

Table 8과 Fig. 10에서 텐던의 초기 긴장력(H_o)의 변화에 따른 횡좌굴 휨모멘트(M_{cr})를 산정하여 ABAQUS에 의한 해석결과와 함께 비교하였다. 횡좌굴 모멘트는, 압축력이 작 용하는 하중조건 LC2와 상이하게, 초기장력의 변화에 따라 2% 이내의 미소한 차이를 보인다. 즉, 편향부를 갖는 PS 보 의 횡비틀림 좌굴모멘트 M_{cr}은 초기장력의 증가에 민감하지 않으며, 지간 내부에 설치되는 편향부의 수가 증가함에 따라 횡비틀림 좌굴안정성이 크게 향상된다. 특히 지간 중앙에 편 향부를 1개만 설치하여도 5개 설치하는 경우에 비해 97%-99%의 횡비틀림 좌굴강도를 보유하고 있음을 확인하였다.

또한, 편향부와 텐던의 접착/비접착조건에 따른 횜비틀 림 좌굴강도는 편향부의 개수가 증가할수록 향상되지만, 증 가 비율은 압축력이 작용하는 하중조건 LC2에 비교하면 최 대 2 % 이내로 미비함을 알 수 있다.

Fig. 10. LTB moment (M_{cr}) of cantilever beam

(Unit: kN)

		Initial prestress $H_o = 200 \text{ kN}$							Initial prestress $H_o = 400$ kN						
Specimen		Single tendon		Unbonded double tendon		Bonded double tendon		Single tendon		Unbonded double tendon		Bonded double tendon			
		FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS		
CD	DEV0	797.93	795.39	949.98	946.15	949.98	946.15	486.23	483.42	637.83	633.74	637.83	633.74		
	DEV1	927.48	924.75	1,069.4	1,065.9	1,069.4	1,065.9	883.02	880.69	1,027.4	1,025.5	1,027.4	1,025.5		
3D	DEV2	941.52	939.21	1,081.3	1,077	1,102.3	1,099.3	922.66	919.9	1,062.9	1,059.4	1,083.9	1,080.8		
	DEV5	950.13	947.02	1,089.1	1,086.4	1,123.5	1120.9	945.53	942.77	1,084.6	1,081.6	1,118.9	1,117.7		
	DEV0	198.6	199.43	235.77	234.85	235.77	234.85	140.44	140.8	180.94	180.23	180.94	180.23		
CP	DEV1	228.76	228.15	263.62	259.39	270.85	270.48	217.58	218.36	252.54	255.2	259.82	261.2		
СВ	DEV2	234.07	233.67	268.81	268.45	277.44	273.24	229.33	229.18	264.11	263.14	272.72	271.99		
	DEV5	237.22	236.93	271.91	275.91	281.39	288.39	236.07	235.85	270.79	271.61	280.24	283.25		

(Unit: kN·m)

		Initial prestress $H_o = 200 \text{ kN}$							Initial prestress $H_o = 400$ kN						
Specimen		Single tendon		Unbonded double tendon		Bonded double tendon		Single tendon		Unbonded double tendon		Bonded double tendon			
		FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS	FEM by this study	ABAQUS		
CD	DEV0	287.34	286.68	312.76	311.95	312.76	311.95	283.15	282.49	313.3	312.41	313.3	312.41		
	DEV1	296.82	295.97	326.69	325.82	326.69	325.82	304.04	303.14	337.48	336.54	337.48	336.54		
20	DEV2	297.71	296.81	328.18	327.28	331.06	330.52	305.65	304.66	339.8	338.81	343.47	342.19		
	DEV5	298.21	297.25	329.18	328.33	334.23	333.71	306.51	305.57	341.33	340.4	346.95	345.99		
	DEV0	124.84	125.6	138.37	138.1	138.37	138.1	119.09	117.6	136.26	135.85	136.26	135.85		
CD	DEV1	131.54	127.39	144.46	144.73	146.46	146.45	134.56	135.67	149.58	147.53	151.73	151.2		
СВ	DEV2	132.62	132.56	145.54	144.89	147.9	147.81	136.58	135.43	151.6	151.44	154.1	154.32		
	DEV5	133.24	130.37	146.18	145.86	148.76	149.11	137.69	135.38	152.74	152.01	155.46	155.3		

Table 8. LTB moment of PS beams (M_{cr} , e = 220 mm)

7.결론

이 논문에서는 외부에 설치된 텐던에 초기 긴장력이 재하 된 PS 강재보에 대하여 편향부와 텐던의 접착/비접착조건 을 고려한 3차원 좌굴에 대한 유한요소해석을 수행하였다. 면내 및 면외 좌굴거동에 대한 총 포텐셜 에너지를 유도하 고 이에 근거하여 긴장재의 장력효과가 반영된 PS 강재보 의 좌굴거동에 대한 일반화된 유한요소해석기법을 제시하 였다. 편향부의 개수, 텐던의 초기 긴장력의 변화 및 PS 강재 보의 단부 지지조건에 따른 좌굴거동을 분석한 결과 아래와 같은 결론을 도출하였다.

- (1) 긴장재의 초기장력 효과가 반영된 PS 강재보 요소를 개발하여 산정된 면내 및 면외 좌굴하중은 ABAQUS 를 사용하여 모든 구성 부재를 모델링한 해석결과와 매우 잘 일치하고 있어서, 본 논문에서 정립한 유한요 소해석기법의 타당성을 입증하였다.
- (2) 긴장재의 초기 장력에 의한 PS 강재보의 좌굴거동에 서 지간 내부에 설치된 편향부는 PS 강재보의 면내·외 좌굴강도를 크게 향상시키는 효과가 있다. 특히, 편심 이 없는 텐던의 긴장력에 의한 면내좌굴거동에서 단 순지지된 PS 강재보의 좌굴 긴장력은 캔틸레버 지지 된 PS 강재보의 좌굴 긴장력과 일치함을 확인하였다.
- (3) 텐던의 초기장력이 재하된 PS 강재보에서 외력으로 작용하는 압축력에 대한 좌굴강도는 텐던을 이중 배 열하는 경우 단일 텐던을 배치했을 때보다 좌굴강도 가 약 18% 향상되었다. 또한, 편향부와 텐던의 접착 조건을 고려한 경우와 비접착조건을 부여한 경우의 좌굴강도의 변화는 최대 3.6%로 산정되었다.

(4) PS 보의 횡비틀림 좌굴모멘트는 초기 긴장력에 민감 하지 않고, 지간 내부에 설치되는 편향부의 수가 증가 함에 따라 횡비틀림 좌굴안정성이 크게 향상된다. 특 히, 지간 중앙에 편향부를 1개만 설치하여도 5개 설치 하는 경우와 비교하여 97 % 이상의 횡비틀림 좌굴강 도를 보유하고 있음을 확인하였다.

감사의 글

이 논문은 한국연구재단의 연구비(NRF-2021R1A2C10 09716) 지원으로 작성되었습니다.

참고문헌(References)

- [1] Belenya, E. (1977) *Prestressed Load-Bearing Metal Structures*, Mir Publishers, USSR.
- [2] Wadee, M.A., Hadjipantelis, N., Bazzano, J.B., Gardner, L., and Lozano-Galant, J.A. (2020) Stability of Steel Struts with Externally Anchored Prestressed Cables, *Journal of Constructional Steel Research*, Elsevier, Vol.164, 105790.
- [3] de Araujo, R.R., de Andrade, S.A.L, Vellasco, P.C.G.da.S, da Silva, J.G.S., and de Lima, L.R.O. (2008) Experimental and Numerical Assessment of Stayed Steel Columns, *Journal of Constructional Steel Research*, Elsevier, Vol.64, pp.1020-1029.
- [4] Wu, K., Wadee, M.A., and Gardner, L. (2020) Interactive Buckling in Prestressed Stayed Beam-Columns, *International Journal of Mechanical Sciences*, Elsevier, Vol.174, 105479.
- [5] Wu, K., Wadee, M.A., and Gardner, L. (2021) Pre-

stressed Stayed Beam-Columns: Sensitivity to Prestressing Levels, Pre-Cambering and Imperfections, *Engineering Structures*, Elsevier, Vol.226, 111344.

- [6] Yang, D.S., Lim, S.H., and Park, S.K. (2002) Flexural Behavior of External Prestressed H-Beam, *Journal of Korean Society of Steel Construction*, KSSC, Vol.14, No.1, pp.79-85 (in Korean).
- [7] Park, Y.-G., Park, Y.-H., and Lee, S.-Y. (2000) A Study on the Reinforcement of Steel Composite Beam Using the External Post-Tensioned Method, *Journal* of Korean Society of Steel Construction, KSSC, Vol. 12, No.5, pp.549-558 (in Korean).
- [8] Jung, M.J., and Yoon, S.K. (2017) Structural Performance on the Self-Centering Connections with Different Conditions of PT Strands, *Journal of Korean Society of Steel Construction*, KSSC, Vol.29, No.1, pp.73-80 (in Korean).
- [9] Park, S., Kim, T., Kim, K., and Hong, S.-N. (2010) Flexural Behavior of Steel I-Beam Prestressed with Externally Unbonded Tendons, *Journal of Constructional Steel Research*, Elsevier, Vol.66, No.1, pp.125-132.
- [10] Belletti, B., and Gasperi, A. (2020) Behavior of Prestressed Steel Beams, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.136, No.9, pp.1131-1139.
- [11] Ghafoori, E., and Motavalli, M. (2015) Lateral-Torsional Buckling of Steel I-Beams Retrofitted by Bonded and Un-Bonded CFRP Laminates with Different Pre-Stress Levels: Experimental and Numerical Study, *Construction and Building Materials*, Elsevier, Vol.76, pp.194-206.
- [12] Kambal, M.E.M., and Jia, Y. (2018) Theoretical and Experimental Study on Flexural Behavior of Prestressed Steel Plate Girders, *Journal of Constructional Steel Research*, Elsevier, Vol.142, pp.5-16.
- [13] Ren, Y., Wang, Y., Wang, B., Ban, H., Song, J., and Su, G. (2018) Flexural Behavior of Steel Deep Beams Prestressed with Externally Unbonded Straight Multi-Tendons, *Thin-Walled Structures*, Elsevier, Vol.131, pp.519-530.
- [14] Kim, M.-Y., Nanzad, N., and Hayat, U. (2020) Effects of

Un-Bonded Deviators on the Out-of-Plane Buckling of Steel H-Beams Pre-Stressed by a Straight Tendon Cable, *Engineering Structures*, Elsevier, Vol.214, 110566.

- [15] Zhang, W.-F. (2018) Symmetric and Antisymmetric Lateral-Torsional Buckling of Prestressed Steel I-Beams, *Thin-Walled Structures*, Elsevier, Vol.46, pp.463-479.
- [16] Kim, M.-Y., Kim, N.-K., and Hayat, U. (2021) Flexural Buckling and Second-Order Analysis of Pre-Stressed Steel Beams with Un-Bonded/Bonded Deviators, *Thin-Walled Structures*, Elsevier, Vol.164, 107806.
- [17] Kim, M.-Y., Hayat, U., and Mehdi, A.I. (2021) Lateral-Torsional Buckling of Steel Beams Pre-Stressed by Straight Tendons with a Single Deviator, *Thin-Walled Structures*, Elsevier, Vol.163, 107642.
- [18] Kim, M.-Y., Mehdi, A.I., and Hayat, U. (2022) Spatial Stability of Pre-Stressed Mono-Symmetric Steel Beams with Un-Bonded/Bonded Deviators Under Compression and End Moments, *Journal of Constructional Steel Research*, Elsevier, Vol.189, 107078.
- [19] Khosla, C.M. (1975) Buckling Loads of Stayed Columns Using the Finite Element Method, Master's Thesis, University of Windsor, Canada.
- [20] Hathout, I.A.-S. (1977) Stability Analysis of Space Stayed Columns by the Finite Element Method, Master's Thesis, University of Windsor, Canada.
- [21] Chen, Z.H., Wu, Y.J., Yin, Y., and Shan, C. (2010) Formulation and Application of Multi-Node Sliding Cable Element for the Analysis of Suspen-Dome Structures, *Finite Elements in Analysis and Design*, Elsevier, Vol.46, No.9, pp.743-750.
- [22] Zhou, B., Accorsi, M.L., and Leonard, J.W. (2004) Finite Element Formulation for Modeling Sliding Cable Elements, *Computers & Structures*, Elsevier, Vol.82, pp.271-280.
- [23] Argyris, J.H., Dunne, P.C., and Scharpf, D.W. (1978) On Large Displacement-Small Strain Analysis of Structures with Rotational Degrees of Freedom, *Computer Methods in Applied Mechanics and Engineering*, Elsevier, Vol.14, No.3, pp.401-451.
- [24] Dassault Systèmes Simulia Corp. (2019) Abaqus User's Manual, DSS, USA.

요 약: 이 논문에서는 편향부가 있는 외부 긴장 강재 보의 휨 및 횡비틀림 좌굴에 대한 유한요소해석기법이 새로이 제시되었다. 우선, 외부 긴장재를 위한 편향부의 수에 따른 강재 보의 총 포텐셜 에너지가 제시된다. 그리고, 긴장재와 편향부 사이의 접착 및 비접착 조건을 고려하여 세 가지 외력 상태에 대하여 제안된 총 포텐셜 에너지를 기반으로 유한요소해석기법을 정식화하였다. 단순보와 캔틸레버보에 대한 면내 및 면외 횡비틀림 좌굴해석결과를 편향부의 수에 따라 제시하였고, 상용프로그램을 이용한 해석결과와 비교/분석하였다.

핵심용어: 유한요소해석, 면내 면외 좌굴, 강재보, 프리스트레스, 텐던