Journal of Korean Society of Steel Construction

Vol.28, No.4, pp.231-242, August, 2016

대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능

박홍근¹·이호준^{2*}·김창수³·황현종⁴

¹교수, 서울대학교, 건축학과, ²박사과정, 서울대학교, 건축학과, ³부교수, 산동건축대학교, 토목공정학원, ⁴조교수, 후난대학교, 토목대학

Seismic Performance of RC Column-Steel Beam Connections for Large Columns

Park, Hong Gun¹, Lee, Ho Jun^{2*}, Kim, Chang Soo³, Hwang, Hyeon Jong⁴

¹Professor, Dept. of Architecture & Architectural Engineering, Seoul National University, Seoul, 08826, Korea
²Graduate Student, Dept. of Architecture & Architectural Engineering, Seoul National University, Seoul, 08826, Korea
³Associate professor, School of Civil Engineering, Shandong Jianzhu University, Shandong, 250101, China
⁴Assistant professor, College of Civil Engineering, Hunan University, Hunan, 410082, China

Abstract - Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

Keywords - RC column, Steel beam, Beam-column joint, Face bearing plate, Transverse beam, Welded stud

1. 서 론

철근콘크리트기둥(RC column)과 강재보(Steel beam) 를 접목한 RCS구조는 국내뿐만 아니라 미국, 일본 등 국외 에서도 활발하게 사용되어 온 대표적인 하이브리드 구조시 스템이다. Sheikh *et al.*^[1]과 Deierlein *et al.*^[2]는 다양한 RCS접합부 상세에 대하여 구조실험을 수행하고 설계모델을 제안하였으며, 그 연구성과는 ASCE 설계지침^[3]의 근간을 이루었다. Kanno and Deierlein^[4]은 ASCE 지침을 기반으 로 하여 교차보나 스터드 등 보다 더 다양한 상세에 적용할 수 있는 설계식을 제안하였다. 일본에서는 RCS접합부에 대 한 다양한 상세와 설계모델이 제안되었으며, 이들을 정리한 설계지침도 일본건축학회에 의해서 출간되었다^[5].

ASCE 지침은 당초 약진 또는 중진 지역(설계지반가속도 0.2g 이하)을 위해서 제안되었으나, 이후의 연구자들에 따 르면 잘 설계된 RCS 접합부는 강진 지역에서도 충분히 적용 이 가능하며, ASCE 지침의 설계식도 상당히 보수적인 것으 로 나타났다^[6]. 그러나 ASCE 지침은 구조상세와 관련하여 횡철근 배근량이나 지압판(Face Bearing Plate, FBP) 두께 등에 대하여 최소규정을 두고 있어 실무 적용에 어려움이 있 다. 또한 접합부의 구조성능을 개선하기 위하여 확장형 지압 판(Extended FBP, E-FBP)이나 밴드플레이트^[7], 커버플레 이트^[8] 등의 보강상세가 적용되는데, 이들은 모두 내화처리 를 필요로 하며 용접작업이 복잡하고 슬래브철근과 간섭되 는 등 시공과 제작 상 여러 난점이 나타나고 있다.

본 연구에서는 대형기둥에 적합하도록 제작성 및 시공성 을 개선한 RCS접합부 상세를 제안하였다. 특히 국내외에서

Note.-Discussion open until February 28, 2017. This manuscript for this paper was submitted for review and possible publication on December 9, 2015; revised April 4, 2016; approved on May 9, 2016.

Copyright © 2016 by Korean Society of Steel Construction *Corresponding author.

Tel. +82-2-880-7053 Fax. +82-2-882-7053 E-mail. hojun1032@gmail.com

많이 사용되어 온 E-FBP, 밴드플레이트, 커버플레이트 등은 시공이 어렵고 내화처리를 요구하기 때문에 이들을 교차보 (Transverse beam)와 스터드로 대체하였다. 특히 보 플랜지 의 상하부 콘크리트의 지압부를 보강하기 위하여 U형 띠철근 을 사용하였으며, 접합부 횡철근과 FBP 상세를 간소화하였 다. 제안된 접합부상세의 내진성능을 평가하기 위하여 2/3 스 케일의 내부접합부에 대한 주기하중실험을 수행하였다.

2. 실험계획

Table 1과 Fig. 1은 실험체의 주요 설계 변수를 나타내고 있다. 실험체의 변수는 FBP의 두께와 교차보 및 스터드의 사용여부이다. FBP의 두께 16mm는 ASCE 설계지침^[3]의 요 구조건을 만족하는 수준이다. ASCE 지침에 따르면, 접합부 패널의 외부요소의 기여도를 증진시키기 위하여 강재기둥 또는 E-FBP의 사용을 권장하고 있지만, 실제 건축물에서는 대부분의 내부접합부가 교차보를 보유하기 때문에 교차보로 서 강재기둥 또는 E-FBP의 역할을 대체하고자 하였다. 교 차보가 없는 경우에는 플랜지에 용접한 스터드로 대체하여, 접합부 패널이 전단강도를 발현할 수 있도록 하였다.

TF6은 교차보를 사용하고 FBP의 두께를 6mm로 설계한 실험체이다. TF16에는 교차보와 두께 16mm의 FBP를 사용 하였다. SF6에서는 교차보 대신에 스터드(Headed stud)를 사용하였고 FBP의 두께는 6mm이다. F16은 교차보와 스터 드 없이 두께 16mm의 FBP만을 보강하였다.

ASCE 지침에 따르면 접합부 상하부 기둥에서 길이 0.4*d* (0.4×보 춤 600mm= 240mm)에 걸쳐 세 층의 횡철근을 집 중적으로 배근하도록 요구하고 있다. 이는 외부압축장에서 의 스트럿-타이 작용을 위한 규정이다. 본 연구에서는 이 규 정에 따르면서 지압부를 보다 더 효과적으로 구속하고, 대형 기둥의 경우 시공성을 개선하기 위하여 U형 띠철근(U-cross ties)을 적용하였다(Fig. 2). U형 띠철근이 외부압축장의 인 장력에도 기여할 수 있도록, B급 겹침이음 규정을 만족시켰다.

접합부 내부에서는 웨브를 천공하여 띠철근을 관통 및 겹 침이음하는 기존 상세 대신에^[3], 미자로 구부린 띠철근을 네 모서리에(교차보가 없는 경우 양 사이드에) 배치하여 작업성 을 개선하였다. 이 때, 교차보의 웨브로 인해 단절된 콘크리 트를 연결하고 띠철근을 현장에서 쉽게 배치할 수 있도록 스 터드를 웨브에 용접하였다. 접합부 내의 횡철근 간격은 기둥 부와 동일하게 200mm이며, 크로스타이는 사용하지 않았다. ASCE 지침은 *A*_{sh}(횡보강근 한 층의 단면적, 2×127mm²)가 0.004*bs*_h 이상이 되도록 규정하고 있으며, 이를 만족시키기 위한 횡철근의 간격은 약 *s*_h= 70mm로 계산된다. 그러나 이 러한 규정이 매우 보수적이며 명백한 실효성이 없다는 선행 연구^[4] 결과에 따라 본 연구에서는 적용하지 않았다.

기둥은 정사각형 단면의 크기가 800mm×800mm로 실 제 기둥의 2/3 스케일에 해당하며, 콘크리트의 설계압축강 도는 40MPa이다. 기둥 주철근으로 SD500철근 20—D29를 네 모서리에 배치하였으며, 횡철근 D13을 200mm간격으로

Specimens	Connection details	RC column	Steel beam
TF6	Transverse beam+FBP(6T)	Section dimensions : 800mm×800mm	
TF16	Transverse beam+FBP(16T)	Longitudinal bars : 20-D29(2.0%)	H-section : $600 \times 240 \times 12 \times 20(\text{mm})$
SF6	Headed stud+FBP(6T)	Concrete strength : 40.4MPa	Flexural strength : 1299kN·m
F16	FBP(16T)	Flexural strength : 2213kN·m	

Table	1.	Test	parameters	of	specimens
-------	----	------	------------	----	-----------

Fig. 1. Connection details of RCS joint specimens

Fig. 2. General details of specimens

Table 2. Average properties of tensile coupons

Tancila		Yield	Tensile	Florention	
coupon	Application	strength	strength	(%)	
coupon		(MPa)	(MPa)	(70)	
6T(SM490)	FBP	443	586	30.6	
12T(SM490)	Beam web	386	553	34.4	
16T(SM490)	FBP	369	545	33.9	
20T(SM490)	Beam flange	336	548	20.0	
D13(SD400)	Tie	507	635	-	
D29(SD500)	Long. bar	539	697	-	

배치하였다. 강재보로는 H-600×240×12×20를 사용하고 SM490의 강판을 용접조립으로 제작하였다. 모든 실험체는 강기둥-약보 개념으로 설계하여 기둥의 항복을 방지하였다. 실제 설계에서는 접합부 강도를 보수적으로 설계하여 보의 휨 항복을 유도하는 것이 바람직하다. 그러나 본 연구에서는 접 합부의 내력을 평가하기 위해서, 기존 설계모델들에^{(3),(4),(5)} 근거하여 접합부의 강도를 보의 휨강도와 근사하도록 설계 하였다. Table 2는 실험체에 사용된 강판 및 철근의 인장시 편시험 결과를 나타낸다.

기둥과 보의 순 길이는 각각 3,060mm와 6,760mm이며, 기둥 상단부를 횡방향으로 가력하는 방식으로 실험을 수행 하였다(Fig. 3). 하중은 층간변위비 0.375%, 0.5%, 0.75% 를 각각 6 사이클 씩 반복가력하고, 1.0%를 4 사이클, 1.5%, 2.0%, 3.0%, 4.0%, 5.0%, 6.0%는 2 사이클 씩 반복가력 하 였다. 가력부의 횡변위와 실험체의 강체운동, 접합부의 변 형을 계측하기 위하여 LVDT 변위계를 설치하였으며, 변형 률게이지를 부착하여 강판과 철근, 그리고 콘크리트의 국부 적인 변형을 계측하였다.

Fig. 3. Test set-up

3. 실험 결과

3.1 파괴모드

교차보를 보유하고 FBP의 두께를 6mm로 설계한 TF6은 층간변위비 0.75%에서 외부패널의 대각균열이 발생하였다. 대각균열은 교차보의 영향에 의해서 분산하여 발생하였다. 층간변위비 1.5%에서 보 플랜지가 항복하고, 변위비 2.0% 에서 강재보 지압으로 인한 피복콘크리트의 압괴가 발생하였 다. 층간변위비 3.0%에서는 접합부의 대각균열폭이 1.0mm 를 초과하였으며 대각균열이 기둥 모서리로 확장되었다. 실 험체는 층간변위비 4.0%에서 외부패널 및 기둥의 심한 손상 이 발생하였을 때 최대강도를 발현하였다(Fig. 4(a)). FBP 의 두께를 16mm로 증가시킨 TF16의 파괴모드는 TF6과 거 의 유사하였으며, 이 결과는 FBP의 두께가 큰 영향을 미치 지 않았음을 가리킨다.

교차보 없이 스터드를 플랜지에 용접한 SF6은 층간변위 비 1.0%에서 외부패널 대각균열이 발생하였다. 교차보가 없 는 실험체에서는 외부패널 중앙부를 가로지는 대각균열의 균 열폭이 가장 컸다. 층간변위비 2.0%에서는 강재보 지압으로 인하여 피복콘크리트가 압괴하였으며, 대각균열폭이 1.0mm 를 초과하였다. 하중이 감소하기 시작한 층간변위비 4.0%에 서는 특히 지압부의 파괴가 심하게 나타났다.

교차보와 스터드 없이 두께 16mm의 FBP를 적용한 F16에 서는 층간변위비 1.0%에서 접합부의 대각균열이 발생하였 으며, 지압부 피복콘크리트의 압괴는 변위비 1.5%에서 시작 되었다. 층간변위비 3.0%에서 외부패널 중앙부의 대각균열 폭이 1.0mm를 초과하였다. 그러나 교차보나 스터드를 보유 한 다른 실험체들에 비하면 외부패널의 손상이 느리게 진행 되었으며, 내부패널에서의 강재보 회전운동이 지배적으로 발생하였다. 이러한 결과는 실험체 F16에 외부패널의 기여 를 촉진하는 보강요소가 없어서 외부패널의 기여도가 작았

Fig. 4. Damage modes at 4.0% drift ratio

음을 가리킨다.

3.2 하중-변위 관계

Fig. 5는 접합부 실험체의 하중-층간변위비 이력곡선을 나타낸다. 모든 실험체는 비교적 우수한 변형능력을 나타냈 으며, SF6은 층간변위비 약 4%까지, 나머지 실험체들은 층간 변위비 약 6%까지 최대강도의 80%이상을 유지하였다. FBP 의 두께 차이로 인한 거동 차이는 명확하게 나타나지 않았다. 스터드를 보강한 SF6의 경우 변형능력이 가장 작게 나타 났는데, 이는 강재보 플랜지에 인장력이 작용했을 때 플랜지 에 용접된 스터드의 뽑힘으로 인하여 콘크리트의 탈락이 촉 진되었기 때문으로 판단된다. 층간변위비 0.75%에서부터

Fig. 5. Load-displacement hysteresis curves

스터드 뽑힘으로 인한 콘크리트의 방사형 균열이 관찰되었 다. 플랜지가 압축력을 받을 때에는 스터드가 정착 및 지압 저항에 효과적이지만, 인장력을 받을 때에는 기둥면과의 연 단거리가 충분하지 못할 경우 오히려 콘크리트에 손상을 입 힐 우려가 있다.

교차보 또는 스터드를 보유한 실험체들은 외부패널의 전 단기여도가 증가하여 비교적 높은 강도를 발휘하였다. 반면 에 전단키가 없었던 실험체 F16의 경우 외부패널의 손상이 상대적으로 더디게 나타났으며 강도 작은 대신에 변형능력 이 우수했다.

에너지 소산능력의 측면에서는 모든 실험체가 거의 유사했으며, 접합부의 전단파괴를 겪은 RCS 접합부의 전형적인 이 력곡선을 나타냈다^[5]. 반복가력에 의한 에너지 소산은 접합 부 내의 강재 웨브뿐만 아니라 일정부분 소성화를 보인 보 플 랜지에 의한 것이며, 이력곡선의 핀칭현상은 내부패널의 지 압파괴와 외부패널의 전단균열에 의한 영향으로 판단된다.

3.3 변위 기여도

접합부의 변형은 전단변형과 내부패널에서 지압파괴로 인해 발생하는 강재보의 회전운동으로 나눌 수 있으며, 각각 의 변형이 전체 변위에서 차지하는 기여도를 평가하였다. 실 험을 통해 계측된 전단변형각 γ(Fig. 3의 변위계 A)와 내부 강재보의 회전각 θ(Fig. 3의 변위계 B)에 대응되는 기둥 상 단의 횡변위 Δ_{vs}, Δ_v는 다음과 같이 계산된다(Fig. 6).

$$\Delta_{ps} = \gamma \left(L_c - h \frac{L_c}{L_b} - d \right) \tag{1}$$

$$\Delta_{br} = \theta L_c \tag{2}$$

*L*_b는 보의 유효스팬(= 6,760mm), *L*_c는 기둥의 유효스팬 (= 3,060mm), *h*는 기둥의 춤(= 800mm), *d*는 보의 춤(= 600mm)이다.

Fig. 7의 막대 그래프에서 빗금 친 영역은 전단변형과 회 전운동의 층간변위비에 대한 기여도를 나타내며, 색칠되지 않은 부분은 보 및 기둥의 휨변형이 층간변위비에 기여한 정 도를 나타낸다. 층간변위비 2.0%에서의 접합부 변형의 기여 도는 전체 변위의 약 46~50%에 해당함을 알 수 있으며, 층 간변위비 4.0%에서는 그 비중이 약 66~75%로 증가하였다. 이 는 실험체의 손상이 대부분 접합부에 집중하였음을 나타낸다. 전단변형의 기여도는 교차보를 보유한 TF6과 TF16에서 가장 크게 나타났으며(층간변위비 4.0%에서 각각 25%와 22%), 교차보 및 스티드가 없는 F16이 가장 작았다(층간변 위비 4.0%에서 11%). 이는 접합부의 전단변형각을 외부표 면에 설치한 변위계를 통해서 계측했기 때문이다. RCS 접합 부의 특성상, 내부패널의 전단변형이 외부패널의 전단변형 보다 클 수밖에 없으며^[9], 그 정도는 접합부 상세에 의존한 다. 식 (1)에서는 외부패널에서 계측한 γ가 접합부 내외부에 서 균일함을 가정하였다.

한편 지압파괴로 인한 강재의 회전운동은 층간변위비 2.0% 일 때 F16에서 가장 컸다(기여분 42%). 그러나 층간변위비 4.0%에서의 보 회전운동의 기여도는 스터드를 보강한 SF6 에서 57%로 가장 크게 나타났는데 있는 앞서 언급하였듯이 플랜지에 용접한 스터드가 지압부의 콘크리트 파괴를 가속 화했기 때문으로 판단된다.

Fig. 8는 실험체 F16에 대하여 하중과 접합부 변형(total joint distortion)의 관계를 나타낸 것이다. 가로 축의 접합 부 변형은 전단변형각과 회전변형각의 합이다. F16은 접합 부 변형 약 1.9%(층간변위비 3%)에서 최대강도를 거의 발현 하였으며 접합부 변형 약 2.8%(층간변위비 4%)까지 하중을 유지하였다.

비교를 위하여 선행연구^[10]에서 유사한 보강상세(FBP만

Fig. 8. Normalized load-total joint distortion relationships

보유)를 가진 실험체의 전단파괴 거동, 전단파괴가 지배하는 접합부의 하중-변형 모델^{[1],[6]}을 함께 나타냈다. 이들은 모 두 접합부 변형 2%에서 최대강도의 90% 이상을 발현하고 있 으며, 이후에도 완만한 하중증가를 보인다는 점에서 본 실험 결과와 유사하다.

3.4 변형률 계측결과

Fig. 9(a)는 접합부 내외부(기둥면을 기준으로 안으로 100mm, 밖으로 50mm)에서의 플랜지의 변형률을 보여준다. 층간변 위비 2.0%까지는 정가력시 거의 유사한 인장변형률을 나타 냈으며, 변위비 1.5%에서는 이미 항복변형률을 초과하였다. 변위비 3.0%에서는 접합부 내부의 변형률이 크게 증가함을 알 수 있는데, 지압파괴의 발생으로 보의 유효길이(effective arm)가 증가하여 잠재적인 보의 소성힌지 위치가 접합부 내 부로 이동했기 때문이다. 이러한 경향은 모든 실험체에서 확 인되었다.

Fig. 9(b)는 SF6과 F16에서의 접합부 내 웨브 변형률을 비교한 것이다. F16의 경우 층간변위비 1.5%에서 웨브가 큰 소성변형을 보였지만 변위비 2.0%에서는 웨브의 변형이 오 히려 줄어듬을 알 수 있다. 이는 지압파괴 이후에 내부패널 의 저항이 줄고 외부패널의 전단저항의 기여도가 증가하였 음을 나타낸다. SF6에서도 유사한 경향을 볼 수 있다.

Fig. 9(c)는 FBP에 종방향으로 부착한 변형률 게이지의 계측결과를 보여준다. 주기하중 초기에는 정방향으로 가력 시 압축변형률이 서서히 증가하는데 이는 보의 수직 전단력 에 대하여 FBP가 압축재의 역할을 하기 때문이다. 따라서 FBP의 두께가 얇은 TF6의 변형률이 더 큼을 알 수 있다. 그 러나 충간변위비 2.0% 이후부터는 변형률이 인장을 향하게 되는데 이는 지압파괴로 인해 지압저항부가 접합부 안쪽으 로 이동한 영향으로 판단된다.

Fig. 9(d), (e)는 접합부 내부 횡철근의 변형률을 보여준 다. 접합부 외부패널의 전단파괴가 진전된 층간변위비 3%에 서 횡철근이 크게 항복하였다. 접합부 상하부에 적용된 U형 횡철근도 하중이 감소하기 시작한 변위비 5%에서 항복변형 률을 초과하였다(Fig. 9(f)).

Fig. 9. Strains of concrete, re-bars, and steel plates

4. 파괴모드에 따른 강도평가

4.1 보 휨 항복

보 휨강도에 해당하는 기둥상단의 횡력 V_{bb}는 다음과 같이 계산된다.

$$V_{bf} = 2M_p \frac{L_b}{\left(L_b - h\right)L_c} \tag{3}$$

여기서 Mp는 강재보 단면의 소성휨강도(= 1,299kN·m)이다. 식 (3)에 따라 보 항복에 해당하는 기둥횡력은 Vbr = 963kN 이다. 실험최대강도는 예상내력 대비 94~108%를 발휘하였 으며, TF16의 부가력에서만 실험 강도가 Vbr를 상회하였다 (Table 4). 이러한 결과는 보가 상당히 항복하였지만, 단면 소성강도를 발휘할 정도로 완전히 항복하지는 않았음을 알 수 있다. 실제로 파괴는 접합부에서 집중적으로 발생하였으

(d) Compression field(outer), V_{cfn}

Fig. 10. Load transfer mechanism of RCS joint

Resistance	ASCE design guideline(1994)	Kanno and Deierlein(2002)	Note
Effective outer joint width	$\begin{split} b_o &= C \big(b_m - b_i \big) < 2 d_o \\ b_m &= \big(b_f + b \big) / 2 < b_f + h < 1.75 b_f \\ C &= \big(x / h \big) \big(y / b_f \big) \end{split}$	$\begin{split} b_o &= C \big(b_m - b_i \big) \\ b_m &= \big(\overline{b_f} + b \big) / 1.5 \leq b \\ \overline{b_f} &= \max \left[b_i, y \right] \\ C &= \alpha (x/h) \left\{ 0.3 + 0.7 \big(y/\overline{b_f} \big) \right\} \end{split}$	$\begin{array}{l} b_i = \text{ inner width(240mm)} \\ d_o = 0 \text{mm when neither steel columns or} \\ \text{E-FBPs are present} \\ b_f = \text{flange width(240mm)} \\ h = \text{ column depth(800mm)} \end{array}$
Bearing capacity	$C_{cn}=\bigl(2f_{c\!k}\bigr)b_j(0.3h)$	$\begin{split} C_{c\!n} = & \left(0.85 \times 1.9 f_{c\!k} \right) b_i \big(\beta_1 h/2 \big) \\ & \beta_1 = 0.58 \end{split}$	b= column width(800mm) x= strut length along beam axis y= bearing width of shear key
Shear capacity			$\alpha = 0.7$ (transverse beam), 1.0(others) $f_{\star} = \text{concrete strength}(40 \text{ 4MPa})$
Joint web	$\begin{split} V_{wn} = 0.6 F_{yw} t_w h_j \\ h_j = 0.7 h \end{split}$	$V_{wn} = \left(1/\sqrt{3}\right) F_{yw} t_w h_j$ $h_j = 0.8h$	b_{j} = joint width $(b_{j} = b_{i} + b_{o})$ F_{yw} = web yield strength(386MPa)
Inner concrete	$V_{csn} = 1.7 \sqrt{f_{ck}} b_p h \le 0.5 f_{ck} b_p d_w$	$V_{csn} = 1.65 \sqrt{f_{ck}} b_i h$	$t_w^{=}$ web thickness(12mm) $b_p^{=}$ FBP width(240mm)
Outer concrete	$\begin{split} V_{cfn} &= V_c' + V_s' \leq 1.7 \sqrt{f_{ck}} b_o h \\ V_c' &= 0.4 \sqrt{f_{ck}} b_o h \\ V_s' &= A_{sh} f_{ysh} 0.9 h / s_h \end{split}$	$\begin{split} V_c' + V_s' &\leq 1.65 \sqrt{f_{ck}} b_o h \\ V_c' &= 1.05 \sqrt{f_{ck}} b_o h \\ V_s' &= A_{sh} f_{ysh} 0.9 h/s_h \end{split}$	d_w = web depth(560mm) A_{sh} = tie sectional area(2×127mm ²) f_{ysh} = tie yield strength(507MPa) s_h = joint tie spacing(200mm)

	•	D '	
l ob o	· 2	Doctorn	ocuptions
галле	э.	DESIGN	cuuations

m		C	•
ahle	4	Strength	comparison
rante	•••	Suchgui	comparison

Specimens	Test results (kN)	Predictions ^a									
		Beam flexure (kN)	ASCE(1994)			Kanno and Deierlein(2002)					
			Outer joint width (mm)	Jo	int shear	Joint	Outer joint width (mm)	Safety margin for bearing ^b	Joint general		Failura
				(kN)	Contributions of inner/outer	bearing (kN)			(kN)	Contributions of inner/outer	modes
TF6	(+)923	963 (99%)	0	804 (118%)	1.00/0.00	1059	193	1.12	1,177	0 (5/0 25	Inner shear
	(-)955								(81%)	0.03/0.33	Outer shear
TE16	(+)943	963 (108%) 0	0 804 (129%)	804	1.00/0.00	1059	193	1.12	1,177	0.65/0.35	Inner shear
1110	(-)1040			(129%)					(88%)		Outer shear
SF6	(+)872	963	963 99%) 0 804 (1199	804	804 (119%) 1.00/0.00	1059	179	1.12	1,156	0 66/0 24	Inner shear
	(-)955	(99%)		(119%)					(83%)	0.00/0.34	Outer shear
F16	(+)808)808 963)906 (94%)	6) 0 (804 (113%)	1.00/0.00	1059	05	1.12	986	986 (92%) 0.77/0.23	Inner shear
	(-)906						93		(92%)		Outer shear

^aParenthesis refers to ratio of max. negative loading to prediction ^bDefined as $(2C_{cn}x_c)/(V_{wn}d_f + V_{csn}0.75d_w)$

며, 보의 국부좌굴은 발생하지 않았다.

4.2 ASCE 지침에 따른 접합부 강도

본 연구에서는 접합부의 강도를 ASCE 설계지침^[3]과 Kanno and Deierlein^[4]의 제안식에 따라 평가하였다. ASCE 지침 에 따르면 RCS접합부의 파괴모드는 패널존의 전단파괴와 보 상하부 콘크리트의 지압파괴로 나눌 수 있다. 이 두 파괴 모드의 강도를 비교하여 최소인 값이 접합부의 내력이 된다. Table 3은 ASCE 지침의 주요 설계식을 정리한 것이다.

외부유효폭을 나타내는 b₀는 외부 압축장의 전단 기여도 를 산정할 때뿐만 아니라 지압강도를 산정할 때에도 사용된 다. x와 y는 전단키(shear key)의 치수에 따라 결정되는 값 으로서, ASCE 지침에서는 강재기둥이나 E-FBP가 존재하 는 경우에만 x와 y를 정의하고, 이들이 모두 없는 경우에는 b₀= 0mm(d₀= 0mm)로 간주한다. ASCE 지침에 따르면 본 실험체들은 모두 b₀= 0mm이며, 즉 외부패널의 효과는 고려 되지 않는다.

RCS 접합부의 전단강도는 강재웨브^[11]와 내부 콘크리트 스트럿^[12], 외부 콘크리트 압축장의 기여도(각각 *V_{wn}*, *V_{csn}*, *V_{cfn})를 합하여 구할 수 있다. 강재웨브와 콘크리트 스트럿은* 내부패널을 구성하며, 콘크리트 압축장은 외부패널의 전단 작용을 가리킨다. 접합부에 작용하는 힘의 평형방정식으로 부터, 전단파괴를 방지하기 위한 조건은 다음과 같다.

$$\sum M_{p} + V_{b}h - V_{c}d - V_{b}h_{j}$$

$$\leq \phi \left[V_{wn}d_{f} + 0.75 V_{csn}d_{w} + V_{cfn}(d + d_{o}) \right]$$
(4)

여기서 V_b는 보에 작용하는 수직전단력, V_b는 기둥에 작용하 는 수평전단력, h_j는 접합부의 유효 춤(보수적으로 0.7h), ϕ 는 강도저감계수(실험결과와의 비교 시 1.0 가정), d_i는 플랜 지 중심간 거리(= 580mm), d_w는 웨브 춤(= 560mm)이다.

강재보의 수직전단력에 대한 지압 저항모델은 직사각형 압축블록을 가정한다(Fig. 10(a)). 식 (4)에 의한 전단강도 의 평가와는 별개로, 지압설계는 다음과 같이 이루어진다.

$$\sum M_p + V_b h - V_c d + 0.35 h \Delta V_b$$

$$\leq \phi \left[0.7 h C_{cn} + h_{vr} (T_{vrn} + C_{vrn}) \right]$$
(5)

△ V_b는 보 양단의 수직전단력의 차이(= 0kN 가정)이다. 본 연구에서는 플랜지 상하부에 수직보강을 하지 않았으므 로 h_{vr}, T_{vrn}, C_{vrn}은 모두 0으로 간주하였다. Table 3의 지압 강도 C_{on}에서 2f_{ck}는 콘크리트의 유효압축강도, b_b는 압축블 록의 유효폭, 0.3b는 압축블록의 유효깊이를 나타낸다.

Table 4는 각 파괴모드에 따른 설계강도를 기둥횡력으로 치환하여 실험결과와 비교한 것이다. 기존 ASCE 설계지침 에 따르면 접합부의 강도는 모두 전단파괴가 지배하며, 지압 파괴로부터 안전함(전단파괴에 대한 안전율 1.32)을 알 수 있 다. 실험체의 강도는 예상 접합부 전단강도 대비 113~129%를 발휘하여, 기존 ASCE 지침으로 안전측의 설계가 가능함을 나타냈다.

4.3 Kanno and Deierlein에 따른 접합부 강도

Kanno and Deierlein^[4]은 접합부를 내부요소와 외부요 소로 구분하여 각각의 파괴모드를 결정하고 이들의 내력을 합산하는 방법을 제시하였다(이하, K&D). 내부요소의 파괴 모드는 전단파괴 또는 지압파괴로 정의되고 외부요소의 파 괴모드는 전단파괴 또는 주철근의 부착파괴로 정의된다.

Table 3에 나타나 있듯이, 외부유효폭 b_o의 정의는 ASCE 지침과 다르다. 또한, K&D는 교차보나 스터드를 사용한 경 우에도 x와 y를 정의하였다. 교차보를 사용한 경우 x는 기둥 면에서 교차보 웨브까지의 깊이(= 394mm), y는 교차보 길 이(= 800mm)라 하였으며, 스터드를 사용한 경우 x는 기둥 면에서 가장 가까운 스터드 열을 제외한 스터드의 무게중심 까지의 깊이(= 465mm), y는 스터드의 배열 폭(= 130mm) 임을 가정하였다. 전단키가 없는 경우 x는 0.7h(= 560mm), y는 0mm로 정의된다. α는 교차보가 사용된 경우 0.7이고 그 외에는 1.0이다. TF6, SF6, F16은 각각 b_o = 193mm, 179mm, 95mm로 계산된다. K&D의 경우 전단키가 아예 없 는 경우에도 b_o가 0mm가 아니다.

K&D는 부착파괴가 새로 추가된 것을 제외하면 ASCE의 설계지침과 전반적으로 유사한 식들으로 구성되어 있으며 지면의 제약으로 구체적인 설명은 생략한다.

ASCE 지침과 마찬가지로 K&D도 접합부의 파괴모드는 내외부 모두 전단파괴로 예상하였다(Table 4). 내부패널에 서 전단파괴에 대한 지압파괴의 안전율은 1.12이다. 예상 파 괴모드는 동일하였으나 ASCE보다 K&D의 설계강도가 모두 큼을 알 수 있다. 실험체는 접합부의 설계강도 대비 81~92% 를 발휘하여 비안전측임을 나타냈다. 단, 정상적인 FBP 두 께를 사용한 TF16과 F16의 경우 강도비가 각각 88%와 92% 로 보다 나은 결과를 나타냈다.

4.4 실험체의 접합부 파괴모드

국부적인 콘크리트 탈락은 전단파괴인 경우에도 발생할 수 있는 현상으로, 접합부의 지압파괴와는 구별된다. 접합 부 전단파괴의 가장 두드러진 특징은 강재웨브의 항복이 조 기에 동반된다는 점인데, 강재웨브의 항복이 콘크리트의 국 부적인 탈락을 야기할 수 있음은 선행연구들에 의해서 보고 되어 왔다^{[10],[13]}. 즉, 웨브패널이 항복함에 따라 플랜지에 국 부적인 소성힌지가 발생하며(kinking) 이러한 킨킹 현상이 콘크리트 피복의 탈락을 야기한다는 것이다.

본 실험체들도 층간변위비 1.0~1.5%에서 웨브패널이 항 복하였으며, 피복콘크리트의 국부적인 압괴는 1.5~2.0%에 서 시작되었다. 가장 강도가 작았던 F16의 경우, 보의 소성 휨강도에 도달하지 못했음에도 불구하고 실험 종류 후 명확 한 소성힌지가 확인되었다(Fig. 11 참조). 따라서 비록 지압 부의 손상이 국부적으로 발생하였지만, 본 실험체들의 지배 적인 파괴모드는 접합부의 전단파괴로 판단된다.

Fig. 11. Plastic hinge in flange(specimen F16)

5. 논 의

ASCE 지침의 전단강도는 접합부 변형이 1%(Fig. 8 참조) 일 때의 실험체 강도에 맞춰졌기 때문에 실험체의 최대강도에 대해서는 20% 정도 보수적이라는 평가가 일반적이다^{[6],[14]}. 비 록 본 실험체들이 ASCE 지침의 설계강도를 상회하였지만 (13~29% 초과), 외부패널의 기여도가 반영되지 않은 점 (*b*_o= 0)까지 고려하면 강도 발현이 완전하지 않았을 우려가 있다. ASCE 지침에 비하여 보수성이 덜하다고 알려진 K&D 에 대해서는 강도를 만족하지 못하였다(8~19% 미달).

5.1 접합부 전단강도 저하의 원인

기존 설계모델은 각 저항요소를 단순합산(예를 들어, 내 부패널의 소성강도^{[11],[12]}와 외부패널의 유효강도) 하여 접합 부 전체의 전단강도를 산출하지만, 내부패널과 외부패널의 실제 기여도를 하중-변형 관계에서 도식적으로 나타내면 Fig. 12과 같다. 하중초기에는 내부패널의 전단변형이 외부 패널의 전단변형보다 크기 때문에 내부패널이 접합부 강도 의 큰 부분을 차지할 것이고 외부패널의 강도발현은 상대적 으로 느릴 것으로 판단된다. 그러나 보 상하부의 콘크리트피 복이 탈락한 이후에는 외부 균열폭이 증가하고 횡철근이 항 복(Fig. 9(d),(e))하는 등 외부패널의 기여도가 상대적으로 증가한다. 접합부 전체의 저항을 보면, 지압부 손상으로 인 해 강성이 크게 저하되고 외부패널이 완전히 파괴된 시점에 서 최대강도를 발현한다.

접합부 전단강도 저하의 일차적인 원인으로 지압부 콘크 리트의 조기탈락을 들을 수 있다. 본 실험체들은 층간변위비 1.5%에서 보 플랜지가 항복하였는데, 웨브 전단항복과 더불 어 보 휨항복이 킨킹과 콘크리트 탈락을 조기에 야기했을 것 으로 판단된다.

이차적인 원인으로, 내부패널이 콘크리트 탈락 이후에 상 당한 강도저하를 겪는 점을 들을 수 있다. Fig. 9(a)에 나타 나 있듯이, 콘크리트 탈락 후에 접합부 내부에서 플랜지의 변형이 크게 증가함을 알 수 있다. 이는 보의 잠재적인 소성 힌지가 접합부 내부로 침투했음을 가리키며, 이는 추가적인 콘크리트 탈락을 촉진시킨다. 결과적으로 콘크리트의 탈락 은 유효팔길이를 저감시켜 강재웨브의 저항을 감소시킨다. 또한 접합부 내부의 보가 과도한 소성변형에 의해서 일그러 짐에 따라 내부 콘크리트 스트럿을 충분히 형상하지 못하게 된다. 즉, 콘크리트 탈락과 보 항복의 상호작용으로 인해 내부 패널의 기여도가 크게 감소했을 것으로 판단된다(Fig. 13).

Fig. 12. Schematic behavior of inner and outer panels

Fig. 13. Mechanism of performance degradation of inner panel

5.2 기존 실험결과와 비교

Fig. 14는 K&D 모델에 따라 실험체의 접합부 강도를 평 가한 것이다. 가로 축은 보 소성강도에 대한 실험강도의 비 를 나타내며, 세로 축은 접합부 설계강도에 대한 실험강도의 비를 나타낸다. 비교를 위해서 본 실험체 뿐만 아니라 기존 문헌에서 접합부 전단파괴가 지배한(전단파괴에 대한 지압 파괴의 안전율이 1.00 이상) 실험체 25개^{[9],[10],[13],[15]}를 추가 로 분석하였다. 추가 실험체에서 사용된 접합부 상세는 FBP, 교차보, 스터드, E-FBP, 밴드플레이트, 강재기둥, 커버플 레이트, 수직보강근 등이 있다. K&D 모델이 대부분의 상세 에 대해서 유효외부폭을 정의하기 때문에 공정한 비교가 가 능하다고 판단하였다. 본 실험체가 모두 설계강도를 만족하지 못한 반면, 기존 실험체들은 대체로 설계강도를 상회하였다.

Fig. 14에서 가로축은 보가 항복한 정도를 나타내는데, 세 로 점선은 보 소성강도의 90% 수준, 세로 실선은 보소성강도 의 120% 수준(변형률경화)을 나타낸다. 본 실험체는 모두 이 사이에 포함됨으로서, 언급된 바와 같이 콘크리트의 탈락과 보 항복의 영향으로 강도가 저하되었을 여지가 있다. 한편 기 존 실험체 중에서도 보의 항복과 접합부의 파괴가 동시에 발 생한 경우를 찾아볼 수 있는데, 모두 설계강도를 상회하였다.

그러나 이들 실험체 4개중 3개는 콘크리트의 강도가 102MPa 로서 전단파괴에 대한 지압파괴의 안전율이 2.12이었고, 1개 는 매우 작은(약한) 보를 사용함에 따라 지압파괴의 안전율 이 1.40이었다(본 실험체의 경우 1.12). 즉, 기존 실험체는 지압부가 상대적으로 매우 튼튼하게 설계되었기 때문에 웨 브나 보의 항복으로 인한 킨킹 현상과 콘크리트의 탈락이 매 우 제한적이었을 것으로 판단된다.

RCS 접합부에 대한 초창기 실험은 접합부의 강도평가가 목적이었기 때문에 Fig. 15(a)과 같이 매우 두꺼운 플랜지를

Fig. 14. Strength evaluation of RCS specimens by K&D

Fig. 15. Failure modes of RCS joint specimens according to design concept

사용하여 접합부의 파괴를 유도하였다^{[9],[10],[13]}. 비교적 최 근에 이루어진 실험들은 보다 더 실무적인 목적으로, 강진지 역에서의 안전성을 검증하기 위하여 접합부를 충분히 강하 게 설계하고 보의 항복을 유도하였다^{[16],[17],[18],[19],[20]}. 한편, 접 합부와 보의 파괴를 동시에 유도한 실험은 제한적이었다^[10]. 향 후 접합부와 보의 파괴가 동시에 발생하는 경우에 대한 추가 적인 연구가 필요하다.

6. 결 론

본 연구에서는 대형기둥에 적용하기 위하여, 제작성 및 시공성을 개선한 RCS접합부 상세를 제안하였으며, 반복가 력 실험을 통해 그 내진성능을 평가하였다. 주요 결론은 다 음과 같다.

- (1) 모든 실험체는 층간변위비 1.5~2.0%에서 지압으로 인 한 피복콘크리트의 압괴가 발생하였으며, 최종적으로는 외부패널의 전단파괴로 인하여 하중재하능력이 감소하 였다(변위비 4.0~5.0%).
- (2) FBP두께로 인한 거동 차이는 거의 없었다. 교차보와 스 터드는 접합부의 강도 증가에 효과적이었으나 스터드의 경우 플랜지 인장시 콘크리트의 탈락을 촉진시킴이 확 인되었다.
- (3) 접합부에서 전단파괴가 지배하는 경우에도 지압부의 국 부적인 파괴는 충분히 발생할 수 있으며, E-FBP나 밴 드플레이트 등으로 지압부를 보강하지 않는 경우에는 U 형 띠철근으로 지압부를 효과적으로 구속하는 것이 추 천된다.
- (4) 실험체 강도를 기존 접합부 설계식과 비교한 결과, 기존
 ASCE 설계지침이 실험결과를 안전측으로 예측하였다.
 그러나 교차보나 스터드의 효과를 고려한 K&D 모델에
 대해서는 비안전측의 결과를 나타냈다.
- (5) 접합부의 전단파괴와 보의 휨파괴가 동시에 발생할 경우,

특히 지압부가 충분히 보강되지 않아 탈락에 취약할 경우 에는 접합부의 전단강도가 완전히 발현되지 못할 수 있다.

감사의 글

본 연구는 삼성물산(주)의 연구비 지원으로 수행되었으 며, 이에 감사드립니다.

참고문헌(References)

- Sheikh, T.M., Deierlein, G.G., Yura, J.A., and Jirsa, J.O. (1989) Beam-Column Moment Connections for Composite Frames: Part 1, *Journal of Structural Engineering*, ASCE, Vol.115, No.11, pp.2858-2876.
- [2] Deierlein, G.G., Sheikh, T.M., Yura, J.A., and Jirsa, J.O. (1989) Beam-Column Moment Connections for Composite Frames: Part 2, *Journal of Structural Engineering*, ASCE, Vol.115, No.11, pp.2877-2896.
- [3] ASCE Task Committee on Design Criteria for Composite Structures in Steel and Concrete (1994) Guidelines for Design of Joints Between Steel Beams and Reinforced Concrete Columns, *Journal of Structural Engineering*, ASCE, Vol.120, No.8, pp.2330-2355.
- [4] Kanno, R., and Deierlein, G.G. (2002) Design Model of Joints for RCS Frames, *Proceedings of Composite Construction in Steel and Concrete IV*, ASCE, Canada, pp. 947-958.
- [5] 日本建築学会(2001) 鉄筋コンクリート柱・鉄骨梁混合構造の設計と施工,丸善,日本.
 Architectural Institute of Japan (2001) Design and Construction of Mixed Structures Composed of Reinforced Concrete Columns and Steel Beams, Maruzen Publishing, Japan (in Japanese).
- [6] Parra-Montesinos, G., and Wight, J.K. (2001) Modeling Shear Behavior of Hybrid RCS Beam-Column Connect-

ions, *Journal of Structural Engineering*, ASCE, Vol.127, No.1, pp.3-11.

- [7] 坂口昇(1991) 鉄筋コンクリート柱と鉄骨梁で構成される 柱梁接合部パネルのせん断耐力,日本建築学会構造系論文 報告集,日本建築学会,第428巻,pp.69-78.
 Sakaguchi, N. (1991) Shear Capacity of Beam-Column Connection Between Steel Beams and Reinforced Concrete Columns, *Journal of Structural and Construction Engineering*, Architectural Institute of Japan, Vol.428, pp. 69-78 (in Japanese).
- [8] 三瓶昭彦,吉野次彦,佐々木仁、山本哲夫(1990) プレ キャストコンクリート柱と鉄骨梁で構成された混合 構造工法に関する研究開発:その1 工法の概要および 実験計画,日本建築学会学術講演梗概集 C - 構造2,日 本建築学会,pp.1199-1200.
 Mikame, A., Yoshino, J., Sasaki, H., and Yamamoto, T.

(1990) Mixed Structural Systems of Precast Concrete Columns and Steel Beams, Part I: Outline of Structural System and Planning of Experimental Tests, *Summaries of Technical Papers of Annual Meetings C – Structure 2*, AIJ, pp.1199-1200 (in Japanese).

- [9] Kanno, R. (1993) Strength, Deformation, and Seismic Resistance of Joints Between Steel Beams and Reinforced Concrete Columns, Ph.D. Dissertation, Cornell University, USA.
- [10] Sheikh, T.M. (1988) Moment Connections Between Steel Beams and Concrete Columns, Ph.D. Dissertation, University of Texas at Austin, USA.
- [11] American Institute of Steel Construction (2010) Specification for Structural Steel Buildings (ANSI/AISC 360-10), USA.
- [12] ACI-ASCE Committee 352 (2002) Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures, ACI Committee Report No. ACI 352R-02, American Concrete Institute, USA.
- [13] Deierlein, G.G. (1988) Design of Moment Connections for Composite Framed Structures, PhD. Dissertation, University of Texas at Austin, USA.

- [14] 菅野良一(2002) RCS構造柱梁接合部に対する既存耐力 式の評価とモデル化への一考察: RCS構造柱梁接合部 の耐力評価法に関する研究 その1,日本建築学会構造 系論文集,日本建築学会,第67巻,第553号, pp.135-142.
 Kanno, R. (2002) Evaluation of Existing Strength Models for RCS Joints and Consideration Toward Improved Modeling: A Study on Strength Evaluation of RCS Joints Part 1, Journal of Structural and Construction Engineering, AIJ, Vol.67, No.553, pp.135-142 (in Japanese).
- [15] 西山功,山内泰之,長谷川隆(1990) RC柱とSはりより成る 柱はり接合部の水平加力実験、日本建築学会学術講演梗概 集C-構造2、日本建築学会学、pp.1181-1182.
 Nishiyama, I., Yamauchi, Y., and Hasegawa, T. (1990) An Experimental Study on Elastic-Plastic Behavior of R/C-Column to Steel-Beam Joints Under Seismic Load, Summaries of Technical Papers of Annual Meeting C - Structure 2, AIJ, pp.1181-1182 (in Japanese).
- [16] Bugeja, M.N., Bracci, J.M., and Moore, W.P., Jr. (2000) Seismic Behavior of Composite RCS Frame Systems, *Journal of Structural Engineering*, ASCE, Vol.126, No.4, pp.429-436.
- [17] Parra-Montesinos, G.J., Liang, X., and Wight, J.K. (2003) Towards Deformation-Based Capacity Design of RCS Beam-Column Connections, *Engineering Structures*, Elsevier, Vol.25, No.5, pp.681-690.
- [18] Liang, X., and Parra-Montesinos, G.J. (2004) Seismic Behavior of Reinforced Concrete Column-Steel Beam Subassemblies and Frame Systems, *Journal of Structural Engineering*, ASCE, Vol.130, No.2, pp.310-319.
- [19] Cheng, C.-T., and Chen, C.-C. (2005) Seismic Behavior of Steel Beam and Reinforced Concrete Column Connections, *Journal of Constructional Steel Research*, Elsevier, Vol.61, No.5, pp.587-606.
- [20] Alizadeh, S., Attari, N.K.A, and Kazemi, M.T. (2015) Experimental Investigation of RCS Connections Performance Using Self-Consolidated Concrete, *Journal of Constructional Steel Research*, Elsevier, Vol.114, pp.204-216.

요 약: 대형기둥의 제작성과 시공성을 고려한 철근콘크리트기둥-강재보 접합부의 상세를 제안하였으며, 이를 적용한 접합부의 내진성능 을 연구하였다. 접합부의 보강을 위하여, 교차보, 스터드, U형 타이 등의 상세를 고려하였다. 내진성능의 평가를 위해, 2/3 스케일의 대형 내부접합부에 대하여 반복가력실험을 수행하였다. 실험체들은 충간변위비 4.0%를 넘는 우수한 변형능력을 발휘하였으며, 보의 항복과 접합 부의 항복이 동시에 발생하였다. 최종적으로는, 접합부의 전단파괴로 하중이 감소하였다. 실험강도는 기존 설계모델과 비교되었다.

핵심용어 : 철근콘크리트기둥, 강재보, 보-기둥 접합부, 지압판, 교차보, 스터드