Vol.26, No.3, pp.231-240, June, 2014

SMA 강봉으로 체결된 T-stub의 에너지소산능력

양재근^{1*}·백민창²·이재윤³·이형동⁴

¹교수, 인하대학교, 건축공학과 ²공학석사, 인하대학교, 건축공학과 ³석사과정, 인하대학교, 건축공학과 ⁴석사과정, 인하대학교, 건축공학과

Energy Dissipation Capacity of the T-stub Fastened by SMA bars

Yang, Jae Guen^{1*}, Baek, Min Chang², Lee, Jae Yun³, Lee, Hyung Dong⁴

¹Professor, Department of Architectural Engineering, Inha University, Incheon, 402-751, Korea ²Master of Science, Department of Architectural Engineering, Inha University, Incheon, 402-751, Korea ³Graduate Student, Department of Architectural Engineering, Inha University, Incheon, 402-751, Korea ⁴Graduate Student, Department of Architectural Engineering, Inha University, Incheon, 402-751, Korea

Abstract - The T-stub subjected to an axial tensile force shows various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of the T-stub, and the material properties of the T-stub and fastener. Due to the influence of these changes, the T-stub shows three failure modes: plastic failure after the flexural yielding of the T-stub flange, flexural yielding of the T-stub fillet, and fracture of the fastener. In general, a T-stub with a thin flange and where the gauge distance of the fastener is long has a larger energy dissipation capacity than a T-stub with a thick flange and where the gauge distance of the fastener is short, due to the plastic deformation after flexural yielding. In this study, three-dimensional nonlinear finite element analysis was carried out to determine the effect of the fastener used for fastening the T-stub on the energy dissipation capacity of the T-stub. For the fastener of the T-stub analysis model, F10T-M20 high-tension bolts and Ø19.05-mm (3/4-inch) SMA bars were modeled, and the geometric shape of the T-stub was selected to represent the flexural yielding of the T-stub fillet and the axial tensile failure of the fastener.

Keywords - T-stub, Energy dissipation capacity, SMA bars, F10T high-tension bolts, Three-dimensional nonlinear finite element analysis

1. 서 론

SMA(shape memory alloy)는 오스테나이트(austenite) 와 마르텐자이트(martensite)의 상변화에 의하여 뛰어난 형상기억능력과 초탄성복원능력을 나타내는 신재료이며, 와이어, 강봉, 댐퍼의 형태로 건축 및 토목 강구조물에 적 용하여 에너지소산능력을 증가시켜 내진성능을 향상시킬

Tel. +82-32-860-7588 Fax. +82-32-866-4624 E-mail. jyang@inha.ac.kr 수 있다. 일반적으로 SMA는 형상합금의 배합, 오스테나이 트와 마르텐자이트의 온도에 따라서 Fig. 1 및 Fig. 2와 같 은 형상기억능력과 복원능력에 대한 응력-변형도-온도 관 계 곡선을 나타낸다. 즉, Fig. 1은 SMA의 현재온도가 마르 텐자이트의 최종온도 M^f보다 작은 경우에 하중 가력과 제 하에 따른 SMA의 형상복원능력을 나타낸다. 또한, Fig. 2 는 SMA의 현재온도가 오스테나이트의 최종온도 A^f보다 큰 경우에 하중 가력과 제하에 따른 SMA의 초탄성복원능력을 나타낸다^[1]. SMA의 1차원 구성방정식모델은 Tanaka^[2], Liang and Rogers^[3], Auricchio and Sacco^[4] 등이 제안하 였다. Tanaka는 SMA의 오스테나이트와 마르텐자이트의 상변화를 지수경화법칙(exponential hardening rule)을 적용하여 파악하였고, 상변화 중 재료특성은 변화하지 않고 일정하다고 주장하였다. Liang과 Rogers는 오스테나이트와

Note.-Discussion open until December 31, 2014. This manuscript for this paper was submitted for review and possible publication on January 28, 2013; revised April 4, 2014; approved on June 3, 2014.

Copyright © 2014 by Korean Society of Steel Construction *Corresponding author.

마르텐자이트의 상변화를 코사인경화법칙(cosine hardening rule)을 적용하여 파악하였고, Tanaka와 같이 상변화 중 재료특성은 변화하지 않고 일정하다고 주장하였다.

Fig. 1. Stress-strain relationship and shape memory effect of NiTi SMA

Fig. 2. Stress-strain relationship and super-elasticity effect of SMA

Auricchio와 Sacco는 오스테나이트와 마르텐자이트의 상변화를 선형경화법칙(linear hardening law)를 적용하 여 파악하였다. SMA의 3차원모델 구성방정식은 Liang and Rogers^[5], Boyd and Lagoudas^[6], Auricchio *et al.*^[7] 등이 제 안하였다. Liang과 Rogers은 J₂-형태 변형 위상면(J₂-type transformation surface)에 근거하여 1차원 구성방정식모 델을 발전시켜서 3차원 구성방정식모델을 제안하였다. Boyd 와 Lagoudas는 J₂-형태 변형 위상면를 적용하여 오스테나 이트에서 마르텐자이트로의 상변화를 설명하였고, 다항식 경화함수(polynomial hardening function)를 적용하였다. Auricchio *et al.*은 Auricchio와 Sacco의 연구를 발전시켰 고, 의사탄성변형을 설명하기 위하여 Drucker-Prager 형

232 한국강구조학회 논문집 제26권 제3호(통권 제130호) 2014년 6월

SMA는 댐퍼, 와이어 혹은 강봉의 형상으로 최근 건축구 조물의 접합부에 적용이 시도되고 있다. Speicher *et al.*^[8]

태 위상면(Drucker-Prager-type surface)을 고려하였다.

은 NiTi SMA 강봉을 적용한 기둥-보 접합부상세를 제안하 였고, 이러한 접합부의 복원능력을 파악하는 실험적 연구 를 수행하였다. DesRoches *et al.*^[9]은 반복하중을 받는 SMA 와이어와 SMA 강봉의 재료적 거동특성을 파악하였 고, SMA 와이어가 SMA 강봉보다 복원능력이 우수하기 때 문에 건축구조물에 더 유용하다는 것을 밝혔다. Tamai and Kitagawa^[10]는 SMA 와이어의 초탄성거동 파악 및 내진능력 향상을 위한 건축구조물의 적용성을 검토하였다. Abolmaali *et al.*^[1]은 SMA 강봉으로 체결된 T-stub의 이력거동을 파 악하였다.

이 연구는 반복하중을 받는 T-stub의 이력거동에 영향 을 미치는 여러 가지 요인 중 긴결재의 영향을 파악하기 위 하여 진행하였다. 즉 T-stub 체결에 사용된 긴결재가 Tstub의 에너지소산능력에 미치는 영향을 파악하고자 3차원 비선형 유한요소해석을 수행하였다. T-stub 해석모델의 긴 결재로는 F10T-M20 고장력볼트와 Ø19.05mm(3/4inch) 인 SMA 강봉을 선택하여 모델링하였고, T-stub의 기하학 적 형상은 T-stub 필릿부의 휨항복과 긴결재 파단의 파괴 를 나타내도록 선택하였다.

축방향 인장력을 받는 T-stub의 3차원 비선형 유한요소해석

2.1 T-stub 유한요소 해석모델

축방향 인장력을 받는 T-stub의 에너지소산능력을 파악 하기 위하여 6개의 해석모델을 모델링하여 3차원 비선형 유한요소해석을 수행하였다. 해석에 있어서 적용된 T-stub 강재와 F10T-M20 고장력볼트의 재료적 물성값은 Table 1, Table 2에 정리하였다^[11]. SMA 강봉의 재료적 물성값은 Table 3에 정리하였다^[12]. Table 3에 정리한 것과 같이 상 변화 온도가 저온인 SMA 강봉을 선택한 이유는 SMA의 현 재온도 T가 $T_{current} > A^{f}$ 일 때 적용한 SMA가 우수한 초탄 성복원능력을 나타내어 내진성능의 향상을 도모할 수 있기 때문이다. 일반적으로 α' 값이 1.0보다 상대적으로 큰 값을 갖는 T-stub 접합부는 T-stub 플랜지의 휨항복 후 소성변 형에 의하여 에너지소산능력이 영향을 받는다.

Fy	Fu	Е	E _h	0	\mathcal{E}_{u}	
(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	ε_y		
325	490	205,000	2,062.5	0.0015854	0.0815854	

 Table 1. Material properties of T-stub steel used in the finite element analysis

 Table 2. Material properties of F10T-M20 high-tension bolts used in the finite element analysis

Fy	Fu	Е	e e		
$\left(\mathrm{N/mm^2}\right)$	(N/mm^2)	$\left(N/mm^2\right)$	c_y	\mathcal{L}_{u}	
900	1,000	205,000	0.0015854	0.0115854	

 Table 3. Material properties of SMA bars used in the finite element analysis

	Material variables	Input values
E^A	: Elastic modulus of austenite	70,000 MPa
E^M	: Elastic modulus of martensite	30,000 MPa
ν	: Poisson's ratio	0.33
M^{s}	: Martenite start temperature	244 K (-29.15℃)
M^{f}	: Martenite finish temperature	224K (-49.15℃)
A^s	: Austenite start temperature	248 K (-25.15℃)
A^{f}	: Austenite finish temperature	265 K (-8.15℃)
T_{test}	: Current experimental temperature	293 K (19.85℃)
Η	: Maximum transformation strain	0.05

그러나 α'값이 1.0보다 작거나 근방의 값을 갖는 T-stub 접합부는 T-stub 플랜지 필릿부의 휨항복 혹은 플랜지에 체결된 긴결재에 의하여 에너지소산능력이 영향을 받는다. 따라서 Fig. 3과 Table 4에 나타난 것과 같이 T-stub 해석 모델의 기하학적 형상은 T-stub 필릿부의 휨항복과 긴결 재 파단 파괴양상이 나타나도록 유도하였다. 이를 위하여 Kulak *et al.*^[13], Thornton^[14], Astaneh-Asl^[15] 등이 제안한 아래의 식 (1)과 같은 α'값이 α' = 0.68, 1.61, 3.63 를 선택하 였다. 각각의 T-stub 접합부의 α'값의 변화에 따른 파괴양 상은 Fig. 4와 같이 예측할 수 있다.

$$\alpha' = \frac{1}{\delta(1+\rho)} \left\{ \left(\frac{t_c}{t_f} \right)^2 - 1 \right\}$$
(1)

여기서,

$$t_c = \sqrt{\frac{8B_o b'}{pF_y}} \tag{2}$$

$$\rho = \frac{b'}{a'} \tag{3}$$

$$\delta = 1 - \frac{d'}{p} \tag{4}$$

$$a' = a + \frac{d_{bt}}{2} \tag{5}$$

$$b' = b - \frac{d_{bt}}{2} \tag{6}$$

Fig. 3. Geometric shape of the T-stub

 Table 4. Geometric parameters and analysis models of the T-stub

Spacimon	b_f	t_w	t_f	g_t	r	a	b	α'
specifien	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
S-G210-T15-B300	200	15	15	210	22	45	97.5	2 62
F-G210-T15-B300	300	15						5.05
S-G210-T21-B300	300 13	12	21	210	22	15	07.5	1 (1
F-G210-T21-B300		21	210		43	97.5	1.01	
S-G210-T28-B300	300 10	16	20	210	28	45	97.5	0.68
F-G210-T28-B300		10	20					
S-G210-T15-B30	0							
T-stub flange width (mm)								
T-stub flange thickness (mm)								
T-stub high-tension bolt gauge						e		
distance (mm) S: SMA bars;								

F: F10T-M20 high-tension bolts

(c) Type III ($\alpha < 0$)

Fig. 4. Failure modes of a T-stub connection due to the changes of $\alpha^{'}$

Table 4에 정리한 것과 같이 3차원 비선형 유한요소해석 모델링에 있어서 T-stub 플랜지의 두께는 t_f =15, 21, 28mm로, 긴결재의 게이지 거리는 g_t = 210mm로 선택하 였다. F10T-M20 고장력볼트는 87kN의 고장력볼트 축력 이 발생하도록 초기장력을 가하는 것으로 모델링하였고, Ø19.05mm(3/4inch) SMA 강봉도 87kN의 축력이 발생하 도록 초기장력을 가하는 것으로 모델링하였다. 전체 T-stub 해석모델은 상용프로그램인 ABAQUS(ver. 10.1.03)를 이 용하여 모델링하였다. T-stub, F10T-M20 고장력볼트, 너트, 와셔 등은 C3D8R(eight-node brick element with reduced integration)을 부재요소와 C3D8(eight-node brick element)을 부재요소를 적용하여 검토한 결과 거동 양상, 응력분포, 에너지소산능력 등에 큰 차이가 발생하지 않았기 때문에 해석시간을 고려하여 해석수행의 속도가 빠 른 C3D8R 부재요소를 선택하여 해석을 수행하였다. 그러 나 SMA 강봉은 User Subroutine에서 C3D8R 부재요소를 지원하지 않아서 C3D8 부재요소를 선택하여 해석을 수행 하였다. 해석 시에 각 부재 사이의 접촉 및 지압현상, 긴결 재의 초기장력도 포함하여 해석하였다. 해석 시에 적용한 ABAQUS 옵션은 Table 5와 같다. 하중은 Fig. 5과 같은 변위 조건으로 T-stub 스템의 끝단에 축방향 인장력 형태 로 가하였다. 각 부재 사이의 미끄럼계수는 0.3로 선택하였 다. 전체 T-stub 해석모델은 약 8,800개의 부재와 약 6,000 개의 절점으로 구성되었다.

SMA는 오스테나이트(austenite)와 마르텐자이트(martensite)의 재료적 위상변화에 따라서 아래 Fig. 6과 같은 응력-변형도 관계 곡선을 나타낸다. 이러한 응력-변형도 관계 곡선을 예측하기 위한 SMA의 구성방정식모델은 대표 적으로 Lagoudas모델과 Auricchio모델이 있다. 이 연구에 서는 Lagoudas 구성방정식모델을 적용하였다.

Table 5. ABAQUS options applied in the finite element analysis

Contacts	Command	d Option		18
Washer contacts	constraints		tie	
T-stub – T-stub			allow	
T-stub – high-tension bolts		finite sliding	separati on after	adjust only
T-stub - SMA	contact	0	contact	to remove
Nuts – high-tension bolts		small sliding		closure
Nuts – SMA				

Fig. 5. Loading protocol of a T-stub analysis model.

Lagoudas 구성방정식모델에서 적용한 에너지방정식은 아래의 식 (7)과 같다.

$$G(\sigma_{ij}, T, \xi, \epsilon_{ij}^{t}) = -\frac{1}{2} \frac{1}{\rho} \sigma_{ij} C_{ijkl} \sigma_{ij} \Big[a_{ij} (T - T_0) + \epsilon_{ij}^{t} \Big]$$
(7)
+ $k \Big[(T - T_0) - T \ln (T/T_0) \Big]$
- $s_0 T + u_0 + f(\xi)$

2.2 T-stub 유한요소 해석결과

Fig. 6. Stress-strain relationship curve of SMA

T-stub 해석모델의 α' 값은 $\alpha' = 0.68, 1.61, 3.63$ 이며, 이 경우에 T-stub은 Type I 혹은 Type II의 형태로 파괴될 것으로 예측된다. 그러므로 이 연구에서는 T-stub 필릿부 의 응력집중 현상의 영향으로 필릿부 휨항복과 긴결재 파단 이 발생하는가를 파악하였다. 반복하중을 받는 T-stub의 3차원 비선형 유한요소해석을 통하여 얻은 응력분포는 Fig. 7, Fig. 8, Fig. 9와 같다. α = 3.63인 F-G210-T15 -B300 해석모델과 S-G210-T15-B300 해석모델은 긴결 재와 T-stub 접촉부 및 필릿부에 응력집중 현상에 의한 휨 항복이 발생하였다. 반면에 α =1.61인 F-G210-T21-B300 해석모델과 S-G210-T21-B300 해석모델은 F-G210-T15-B300 해석모델과 S-G210-T15-B300 해석모델보다 긴결재와 T-sub 접촉부의 응력집중 현상은 적게 나타났 고, 필릿부 응력집중 현상은 뚜렷이 나타났다. 또한, α' = 0.68인 F-G210-T28-B300 해석모델과 S-G210-T28-B300 해석모델은 긴결재와 T-sub 접촉부의 응력집중현상 은 F-G210-T21-B300 해석모델과 S-G210-T21-B300 해석모델보다 적게 나타났고, 필릿부 응력집중 현상은 뚜 렷이 나타났다. 이 경우에 긴결재인 F10T-M20 고장력볼

(b) S-G210-T15-B300

Fig. 7. Three-dimensional nonlinear finite element analysis model of the G210-T15-B300 analysis model ($\delta = 11$ mm)

(b) S-G210-T28-B300 ($\alpha' = 0.68$)

Fig. 9. Three-dimensional nonlinear finite element analysis model of the G210-T28-B300 analysis model ($\delta = 7$ mm)

트와 ∅19.05mm(3/4inch) SMA 강봉도 응력집중 현상이 발생하였으나 항복응력은 초과하지 않았기에 인장파단이 발생하지 않은 것으로 판단할 수 있다. Fig. 7, Fig. 8, Fig. 9에 나타난 것과 같이 T-sub은 휨항복 후 플랜지 혹은 필 릿부의 소성힌지가 보 형태 파괴형상(beam-type failure) 을 나타내었다.

T-stub 유한요소해석을 통하여 얻은 T-stub의 이력곡 선은 Fig. 10와 같다. Table 6에 정리한 것과 같이 α' = 1.61, 3.63인 경우에 Ø19.05mm(3/4inch)인 SMA 강봉으 로 체결된 T-stub 해석모델은 동일한 기하학적 형상을 갖 는 F10T-M20 고장력볼트로 체결된 T-stub 해석모델보다 적은 하중-변위 이력곡선 내부면적으로 표시되는 에너지 소산능력을 나타내었다. 반면에, α' =0.68인 경우에 Ø 19.05mm(3/4inch)인 SMA 강봉으로 체결된 T-stub 해석 모델은 동일한 기하학적 형상을 갖는 F10T-M20 고장력볼 트로 체결된 T-stub 해석모델과 유사한 에너지소산능력을 나타내었다. 즉 α' 값이 작아짐에 따라서 SMA 강봉이 긴결 재로 α' 값이 클 때보다 더 효과적인 것을 알 수 있다.

F by Step	G210-T	15-B300	G210-T	21-B300	G210-T28-B300		
	SMA bars	F10T-M20	SMA bars	F10T-M20	SMA bars	F10T-M20	
1	1.1219	2.0244	1.0357	1.8315	0.4175	0.4287	
2	0.3581	1.2514	6.9726	5.8529	18.9104	4.7656	
3	7.2353	12.6549	30.3957	34.9000	33.7915	45.7320	
4	24.7400	34.7846	53.4689	148.3135	75.4815	95.3536	
5	43.8760	55.2665	94.8262	112.6222	110.6823	138.5651	
6	48.3111	72.3850	133.0199	151.2016	161.9389	174.2530	
7	68.5498	93.1504	165.2309	196.2817	206.0730	188.4584	
8	87.6917	128.927	203.2396	257.6669	249.7283	252.3701	
9	115.1947	177.9979	247.1554	327.6416	293.1400	305.3627	
10	152.0839	224.8349	293.3095	403.1330	361.0665	314.7715	
11	192.7162	277.0921	348.0382	485.6934	437.2081	373.2585	
12	296.2276	432.1757	499.3695	706.7097	622.1557	715.8505	
13	364.6922	565.9055	626.4547	851.8046			
14	477.3506	697.5692	801.6767	972.2013			
15	569.2145	871.3278	867.0746	1,308.4736			
16	737.6491	1,073.8970	1,015.2802	1,596.7818			
$E_{D,}$	3,187.01	4,721.24	5,386.55	7,561.11	2,570.59	2,609.17	

Table 6. Comparison of the energy dissipation capacities of the T-stub analysis models according to the changes in the fasteners (unit: kN·mm)

Fig. 10. Load-displacement hysteresis curve by step

2.3 T-stub의 에너지소산능력 평가

T-stub 해석모델의 하중-변위 이력곡선의 내부면적에 해당하는 에너지소산능력은 식 (8)과 같은 등가점성감쇠계 수(eq-uivalent viscous damping factor)을 적용하여 무 차원화하였다.

$$\xi_{eq.} = \frac{E_D}{4\pi \times E_{so}} \tag{8}$$

Fig. 11은 각 싸이클 당 에너지소산과 등가점성감쇠계수
 와의 관계를 나타낸다. Table 7에 정리된 것과 같이 α['] =
 1.61, 3.63인 G210-T15-B300 해석모델은, F10T-M20 고

Fig. 11. Relationship between energy dissipation and the equivalent viscous damping factor

	G210-T15-B300		G210-T	21-B300	G210-T28-B300		
$\xi_{eq.}$ by Step	SMA bars	F10T-M20	SMA bars	F10T-M20	SMA bars	F10T-M20	
1	0.003364	0.005625	0.001601	0.002494	0.000480	0.000390	
2	0.000515	0.001630	0.005658	0.003811	0.012251	0.002085	
3	0.006371	0.010094	0.017006	0.014475	0.014571	0.012658	
4	0.016130	0.020891	0.022987	0.047969	0.025262	0.019947	
5	0.023858	0.028222	0.033722	0.031699	0.028836	0.024619	
6	0.023269	0.033076	0.040968	0.038700	0.035894	0.028160	
7	0.030194	0.041114	0.045143	0.046668	0.040252	0.028779	
8	0.035844	0.051866	0.049609	0.056213	0.043665	0.035655	
9	0.043376	0.064543	0.054700	0.064917	0.046477	0.040303	
10	0.052170	0.073920	0.059183	0.072155	0.052105	0.039862	
11	0.060504	0.082610	0.064415	0.078215	0.057905	0.044349	
12	0.077735	0.105544	0.076879	0.094200	0.071178	0.066668	
13	0.084210	0.117055	0.083461	0.098331			
14	0.093639	0.123150	0.091722	0.097232			
15	0.098772	0.131738	0.090246	0.107123			
16	0.107925	0.141097	0.091659	0.111154			
$\xi_{eq.,}$	0.757876	1.032175	0.828959	0.965358	0.428876	0.343476	
$IncrementRatio^{*)}$	73	.43	85	.87	124	4.86	

 Table 7. Comparison of the equivalent viscous damping coefficients of each T-stub analysis model according to the changes in the fasteners

^{*)}Increment Ratio(%) = $(\xi_{eq.,SMA} / \xi_{eq.,F10T}) \times 100$

장력볼트로 체결된 T-stub이 Ø19.05mm(3/4inch) SMA 강봉으로 체결된 T-stub보다 등가점성감쇠계수가 더 크 다. 이는 T-stub의 에너지소산이 SMA 강봉 보다 T-stub 플랜지의 휨 항복의 영향을 더 받기 때문으로 판단할 수 있다. 반면에 α['] =0.68인 G210-T28-B300 해석모델은 Ø19.05mm (3/4inch) SMA 강봉으로 체결된 T-stub이 F10T-M20 고 장력볼트로 체결된 T-stub 보다 등가점성감쇠계수가 더 크다. 이는 T-stub의 에너지소산이 T-stub 플랜지의 휨 항복의 영향보다 SMA 강봉의 영향을 더 받기 때문으로 판 단할 수 있다. 따라서 α[']의 값이 큰 T-stub의 에너지소산 은 T-stub 플랜지의 휨항복의 영향을 더 받지만 α[']의 값이 작은 T-stub의 에너지소산은 SMA 강봉의 영향을 더 받는 것으로 판단할 수 있다. 또한, α[']의 값이 작은 T-stub 플랜 지에 체결된 SMA 강봉은 초탄성복원능력이 우수하기 때문 에 잔류변형의 영향이 없었고 인장파단도 발생하지 않았다.

3. 결론

이 연구는 F10T 고장력볼트 및 SMA 강봉을 적용한 축방 향 인장력을 받는 T-stub의 에너지소산능력을 비교하기 위하여 진행하였다. 이 연구를 통하여 다음과 같은 결론을 얻었다.

- (1) α' 값이 α' = 0.68, 1.61, 3.63인 F10T 고장력볼트 및 SMA 강봉으로 체결된 T-stub은 예측한 것과 같이 T-stub 플랜지의 휨항복에 의하여 파괴되었다. 그러나 예측한 F10T 고장력볼트나 SMA 강봉의 파단은 발생하 지 않았다.
- (2) α' 값이 큰 T-stub의 에너지소산은 SMA 강봉의 영향 보다 T-stub 플랜지의 휨항복의 영향을 더 받는다. 반 면에 α' 값이 작은 T-stub의 에너지소산은 T-stub 플 랜지의 휨항복의 영향보다 SMA 강봉의 영향을 더 받 는다.

(3) SMA 강봉은 α' 값이 큰 Type I 형태의 파괴양상을 나 타내는 T-stub보다는 α' 값이 작은 Type II 형태의 파 괴양상을 나타내는 T-stub에 사용하는 것이 에너지소 산능력을 더 발휘하여 효과적이다.

기 호

- B₀ : 고장력볼트 초기장력
- E : 강재의 탄성계수(N/mm²)
- E_D: 하중-변위 관계 곡선의 내부 면적에 해당하는 특 정 싸이클의 소산된 에너지
- E_h : 강재의 할선계수(N/mm²)
- *E*_{so}: 특정 싸이클의 최대 변형에너지
- F_{y} : 강재의 항복강도(N/mm²)
- F_u : 강재의 인장강도(N/mm²)
- T : 온도
- T₀ : 기준온도
- a : 고장력볼트 중심축과 T-stub 플랜지 끝 단 사이 의 거리(mm)
- b : 고장력볼트 중심축과 T-stub 스템 면 사이의 거 리(mm)
- b_f : T-stub 플랜지 폭(mm)
- *d*_b : 고장력볼트의 직경(mm)
- d_{bt} : 고장력볼트 구멍의 직경(mm)
- g_t : T-stub의 고장력볼트 게이지 거리(mm)
- p : 고장력볼트의 피치(mm)
- r : 필릿 반경(mm)
- t_f : T-stub 플랜지의 두께(mm)
- t_w : T-stub 웨브의 두께(mm)
- α': 특정 두께에 대한 고장력볼트가 받는 인장강도를
 극대화 하거나 주어진 고장력볼트가 받는 인장강
 도에 필요한 두께를 최소화 하는 값
- ϵ_u : 강재의 인장 변형률
- σ_{ii} : Cauchy 응력 텐서
- ϵ_{ij}^{t} : 변환 변형률 텐서
- ξ : 마르텐자이트 분율(부피비)

감사의 글

이 연구는 한국연구재단(과제번호: NRF-2013R1A2A2A0 7067970)과 인하대학교의 지원에 의하여 수행된 과제의 일 부이다. 이에 논문의 저자들은 감사의 말씀을 전한다.

참고문헌(References)

- Abolmaali, A., Treadway, J., Aswath, P., Lu. F.K., and McCarthy, E. (2006) Hysteresis Behavior of T-Stub Connections with Superelastic Shape Memory Fasteners, *Journal of Constructional Steel Research*, Elsevier, Vol. 62, No.8, pp.831-838.
- [2] Tanaka, K. (1986) A Thermomechanical Sketch of Shape Memory Effect: One-Dimensional Tensile Behavior, *Res Mechanica*, Vol.18, No.3, pp.251-263.
- [3] Liang, C., and Rogers, C.A. (1990) One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials, *Journal of Intelligent Material Systems and Structures*, Sage, Vol.1, No.2, pp.207-234.
- [4] Auricchio, F., and Sacco, E. (1997) A One-Dimensional Model for Superelastic Shape-Memory Alloys with Different Elastic Properties Between Austenite and Martensite, *International Journal of Non-Linear Mechanics*, Elsevier, Vol.32, No.6, pp.1101-1114.
- [5] Liang, C., and Rogers, C.A. (1992) A Multi-Dimensional Constitutive Model for Shape Memory Alloys, *Journal* of Engineering Mathematics, Springer, Vol.26, No.3, pp. 429-443.
- [6] Boyd, J.G., and Lagoudas, D.C. (1996) A Thermodynamical Constitutive Model for Shape Memory Materials, Part I: The Monolithic Shape Memory Alloy, *International Journal of Plasticity*, Elsevier, Vol.12, No.6, pp.805-842.
- [7] Auricchio, F., Taylor, R.L., and Lubliner, J. (1997) Shape-Memory Alloys: Macromodelling and Numerical Simulations of the Superelastic Behavior, *Computer Methods in Applied Mechanics and Engineering*, Elsevier, Vol.146, pp.281-312.
- [8] Speicher, M.S., DesRoches, R., and Leon, R.T. (2011) Experimental Results of a NiTi Shape Memory Alloy (SMA)-Based Recentering Beam-Column Connection, *Engineering Structures*, Elsevier, Vol.33, No.9, pp.2448-2456.
- [9] DesRoches, R., McCormick, J., and Delemont, M. (2004) Cyclic Properties of Superelastic Shape Memory Alloy

Wires and Bars, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.130, No.1, pp.38-46.

- [10] Tamai, H., and Kitagawa, Y. (2002) Pseudoelastic Behavior of Shape Memory Alloy Wire and Its Application to Seismic Resistance Member for Building, *Computational Materials Science*, Elsevier, Vol.25, pp.218-227.
- [11] 한국강구조학회(2011) 강구조설계(개정판), 구미서관. KSSC (2012) *Steel Structure Design (Revised Edition)*, Goomiseogwan, Korea (in Korean).
- [12] SAES Getters Group (n.d.) *SAES Smart Materials*, Memry Corporation, http://www.shape-memory-alloys.com

- [13] Kulak, G.L., Fisher, J.W., and Struik, J.H.A. (2001) Guide to Design Criteria for Bolted and Riveted Joints (2nd Ed.), American Institute of Steel Construction, USA.
- [14] Thornton, W.A. (1985) Prying Action: A General Treatment, *Environmental Engineering*, American Institute of Steel Construction, Vol.22, No.2, pp.67-75.
- [15] Astaneh-Asl, A. (1985) Procedure For a Design and Analysis of Hanger-Type Connections, *Engineering Journal*, American Institute of Steel Construction, Vol.22, No. 2, pp.63-66.

요 약: 축방향 인장력을 받는 T-stub은 T-stub과 긴결재의 재료적 물성 특성, T-stub의 기하학적 형상, 긴결재의 직경과 체결력 등의 변화에 의하여 상이한 거동특성을 나타낸다. 이러한 변화의 영향으로 T-stub은 T-stub 플랜지의 훰항복 후 소성파괴, T-stub 필릿부의 훰항 복과 긴결재 파단, 긴결재의 파단 등과 같은 세 가지 파괴양상을 나타낸다. 일반적으로 T-stub 플랜지의 두께가 얇고 긴결재의 게이지 거리가 긴 T-stub은 플랜지의 훰항복 후 소성화에 의하여 T-stub 플랜지의 두께가 두껍고 긴결재의 게이지 거리가 짧은 T-stub보다 에너지소산능력 이 우수하다. 이 연구는 T-stub 체결에 사용된 긴결재가 T-stub의 에너지소산능력에 미치는 영향을 파악하기 위하여 3차원 비선형 유한요소 해석을 진행하였다. T-stub 해석모델의 긴결재로는 F10T-M20 고장력볼트와 Ø19.05mm(3/4inch)인 SMA 강봉을 모델링하였고, T-stub의 기하학적 형상은 T-stub 필릿부의 훰항복과 긴결재 파단의 파괴를 나타내도록 선택하였다.

핵심용어 : T-stub, 에너지 소산 능력, SMA 강봉, F10T-M20 고장력볼트, 3차원 비선형 해석